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Mean-field stochastic theory for species-rich assembled communities
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A dynamical model of an ecological community is analyzed within a ‘‘mean-field approximation’’ in which
one of the species interacts with the combination of all of the other species in the community. Within this
approximation the model may be formulated as a master equation describing a one-step stochastic process. The
stationary distribution is obtained in closed form, and is shown to reduce to a log-series or log-normal
distribution, depending on the values that the parameters describing the model take on. A hyperbolic relation-
ship between the connectance of the matrix of interspecies interactions and the average number of species
exists for a range of parameter values. The time evolution of the model at short and intermediate times is
analyzed using van Kampen’s approximation, which is valid when the number of individuals in the community
is large. Good agreement with numerical simulations is found. The large time behavior, and the approach to the
stationary state, is obtained by solving the equation for the generating function of the probability distribution.
The analytical results which follow from the analysis are also in good agreement with direct simulations of the
model.

PACS number~s!: 05.40.2a, 05.10.Gg, 02.50.Ey, 87.23.Cc
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I. INTRODUCTION

The steady accumulation of data on all aspects of the v
diverse ecosystems that exist on Earth has revealed a nu
of generic features@1#. Examples include the following:~i!
in species-rich ecosystems, the number of speciesS(n), with
n individuals following a power-lawS(n)'n2g, whereg is
close to 1@1,2#; ~ii ! a relation between the number of spec
in the ecosystem,S, and the connectanceC* —defined as the
number of predator-prey links between pairs of species
vided by the total possible number of links—which has t
hyperbolic formC* 'S211h, with hP@0,1# @3#; and ~iii !
other power-law distributions concerning the extinction
species, for instance, where the lifetime of species,T, ap-
pears to be well described by the distributionN(T)'T2u,
with u between 1.1 and 1.6@4#. There is an urgent need fo
models of ecosystems to be developed which will allow
underlying mechanisms which lead to these regularities to
understood. These models need to be defined for an arbi
number of species, have a set of rules that specify the in
action between pairs of species which is reasonably sim
and based on general features such as the competition
tween species, and have a stochastic element that reflec
randomness of events which are inherent in real system
Ref. @5#, a model of this type was introduced in order
investigate the generic features outlined above. An anal
of the model was begun in that paper, where both numer
and analytical work showed predictions of the model to be
agreement with field data. Here we present a more deta
analysis of the model, using a variety of techniques, a
compare the results of this analysis with that from real e
systems. We begin by defining the model.

The ecosystem under study is taken to haveN individuals
and S possible species. It is modeled as a directed gra
PRE 621063-651X/2000/62~6!/8466~19!/$15.00
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with the nodes labeled byi 51, . . . ,S representing the spe
cies, and the links representing the~predator-prey! interac-
tion between the species at the two nodes being joined. T
interaction is assumed to be given by a single real num
denoted byV i j for the link to j from i. Thus the interaction
between the species in the ecosystem is completely spec
by the S3S real matrixV. Links from a node to itself are
not allowed, and therefore this matrix has zero entries on
diagonal. The antisymmetric matrixSi j [V i j 2V j i has a
more direct interpretation as the ‘‘score’’ of speciesi against
speciesj.

~i! If Si j .0, thenj acts as a resource fori.
~ii ! If Si j 50, there is no interaction betweeni and j.
~iii ! If Si j ,0, theni acts as a resource forj.
Modeling of multispecies ecosystems, involving speci

species interactions or connections of this type, has a l
history @6#. Originally, population dynamics equations, su
as the Lotka-Volterra equations, were written down for tw
species and then for many species. If one imagines stud
the equations near to any fixed point that might exist, it
permissable to linearize about the fixed points, and the en
model is then specified by a singleS3S matrix: the stability
matrix. Whereas for systems involving two species it mig
be useful to calculate this matrix in terms of the origin
parameters of the model, for systems of many species t
are simply too many parameters, and so the emph
changed to trying to investigate general properties that s
matrices might have. An obvious, but crude, assumption,
the entries were random, was first investigated by May@7#
who found that the connectivity of the matrix was importa
in determining its stability properties. Since then, this h
remained a central issue in ecology@8#, as has the study o
the abstract theory of species connected by a complex
work of interactions@9#.
8466 ©2000 The American Physical Society
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Having described the basic idea we will use in our a
proach, we now need to specify the interaction matrixV.
Since the connectivity seems to emerge as an impor
quantity in both theoretical and experimental studies, we w
assign a fixed conductivityC to V, so that we may study
how properties of the system change asC is varied. Other
than this, and the fact that the diagonal entries are zero
will not impose any other restrictions onV. We now have to
define the dynamics. The goal is to define a set of ru
which is simple, but which builds up a complex model ec
system after a sufficiently long time, showing the nontriv
emergent behavior mentioned at the beginning of this s
tion. We do this by assigning the~off-diagonal! entries ofV,
in a purely random way att50, and updating the system a
discrete time steps as follows. At each time step, the follo
ing rules are implemented.

~1! With probability 12m, pick two individuals at ran-
dom. Suppose they belong to speciesi and j, and thatSi j
Þ0. Replace the individual belonging to the species wh
has a negative score against the other species by a new
vidual of the more successful species. So, for example
Si j .0, the total number of individuals belonging to spec
i goes up by 1, and the total belonging to speciesj goes down
by 1. If Si j 50, no action is taken.

~2! With probabilitym, pick an individual at random. Re
place it by another individual ofany of the S species.

These rules have an obvious interpretation. The first s
ply ensures that the most successful species, in the sen
the species having the highest scores, grow at the expen
the less successful ones. However, if the dynamics wa
consist only of this rule, then eventually all species but o
would become extinct. Therefore, a second rule has to
introduced in order to obtain a diverse ecosystem. The s
plest choice is to violate the first rule occasionally, by givi
even unsuccessful species an opportunity through purely
dom events. This is best not thought of as a mutation
speciation, but as an immigration event from an area out
the ecosystem under study.

We have not specified the initial distribution of the entri
in V, and there is a certain amount of freedom regarding
choice. In our simulations we have chosenV i j ( iÞ j ) ran-
domly from a uniform distribution on@0,1#, but any other
choice is equally valid, since only the sign ofSi j is impor-
tant. Since the probability thatV i j 5V j i Þ0 is vanishingly
small, it is almost certain that if the conditionSi j 50 men-
tioned in rule 1 holds, then bothV i j and V j i are zero, and
speciesi andj are not connected by a predator-prey relatio
ship. Since the probability of any matrix element being ze
is 12C, the probability that bothV i j and V j i are zero is
(12C)2, and from what has been said above, the probab
that Si j is nonzero isC* [12(12C)2.

For those simulations that start with no species in
system, a generalized (S11)3(S11) real matrixV8, with
an extra row and column denoted by 0, needs to be in
duced. Then, ifSi0.0, empty space acts as a resource foi.
If Si0,0, then speciesi fails to invade empty space. So, o
average, the expected number of species that can act
invade empty space isSC/2 and the number of species in th
pool that can never interact with empty space is (12C)S.

What has been described above is a strongly interact
stochastic multispecies model, and as such is extremely
-
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ficult to study analytically. It is, however, relatively easy
simulate, given the straightforward nature of the algorith
described above, and we will discuss the results of exten
numerical studies in later sections of this paper. It would s
be very useful to have some approximate treatment avail
which would, at the very least, help to suggest forms wh
could be used to fit the data and simulations. Fortunately,
can do much better than this. A mean-field theory of t
above model yields a master equation which can be analy
using a number of standard techniques. Much of this pa
will be concerned with the derivation of these results a
their subsequent interpretation.

The plan of this paper is as follows. In Sec. II we deri
the master equation within the mean-field approximati
and in Sec. III we investigate the nature of the station
state. The time-dependent properties are the subject of
next two sections: within a Gaussian approximation in S
IV, and a more general study in Sec. V. We conclude wit
summary of the work presented in the paper in Sec.
There are two appendixes: Appendix A and Appendix B co
tain technical details which are used to derive some of
results in Secs. III and V, respectively.

II. MASTER EQUATION

In this section we will derive a master equation whi
approximately describes the complex dynamics introduce
Sec. I. The key simplification is the use of a type of mea
field theory. We focus on one of theS species, which we
shall call speciesA. The otherS21 species are no longe
distinguished as separate species, and are simply lumpe
gether and denoted as speciesB. The B species will be re-
garded as some kind of average species—a kind of effec
background population—with which speciesA interacts.
There are various assumptions inherent in this approach.
instance, that the rate of reproduction is the same for
species, so that a typical species~A! can be picked out as
representative. However, it does reduce the model to on
which just two species are interacting, namely,A and non-
(A5B). It is now relatively straightforward to derive a ma
ter equation which describes the dynamics of this proces

To derive this equation, first suppose thatm50 for sim-
plicity. Then only rule~1! is in operation. In picking two
individuals from a set ofN individuals of theS species, the
following situations arise:~a! both individuals belong to spe
ciesA, ~b! one belongs toA and the other toB and ~c! both
individuals belong to speciesB. In cases~a! and~c!, there is
no action taken under rule~1!. The probability of case~b!
occurring is the sum of the probability that first anA is
selected and then aB and the probability that aB is selected
and then anA,

n

N S 12
n21

N21D1S 12
n

ND S n

N21D5
2n

N S N2n

N21D ,

where n is the number of individuals of speciesA in the
ecosystem. We now have to focus on the quantitySAB in
order to implement the rule. The probability that it is nonze
is C* , and we would expect that, on average, half of t
events the individual from speciesA will have a higher score
than the individual from speciesB, i.e., SAB,0, and the
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other half of the events to haveSAB,0. Therefore, the prob
ability that at each time step the number of speciesA in-
creases by 1 is

W~n11un!5C*
n

N S N2n

N21D ,

and the probability that at each time step the number
speciesA decreases by 1 is

W~n21un!5C*
n

N S N2n

N21D .

We will show shortly that this process leads to a station
probability distribution which is nonzero only ifn50 or n
5N, that is, only if either speciesA dies out completely or
dominates completely. The second rule ensures that s
diversity is retained.

So suppose that we now include the second rule.
transition probabilities above have now to be multiplied
12m, and those involving the second rule will involve
factor m. Specifically, the probability that the individua
picked, when implementing the second rule, is replaced
an individual of agiven species ism/S. If we ask that this
given species isA, then, since the probability that the ind
vidual picked belongs to speciesB is (12n/N), the addi-
tional probability due to rule~2! that at each time step th
number of speciesA is increased by 1 is

m

S S 12
n

ND .

Similarly, the probability that an individual is replaced by a
individual of a different species ism(S21)/S. Since the
probability that the individual picked belongs to speciesA is
n/N, the additional probability that at each time step t
number of speciesA is decreased by 1 is

m

S
~S21!

n

N
.

Putting the two rules together gives the one-step transi
probabilitiesgn[W(n11un) and r n[W(n21un) as

gn5C* ~12m!
n

N S N2n

N21D1
m

S S 12
n

ND ~1!

and

r n5C* ~12m!
n

N S N2n

N21D1
m

S
~S21!

n

N
. ~2!

We can now write down a master equation describing
one-step stochastic process@10,11#. If P(n,t) is the probabil-
ity of speciesA having n individuals at timet, the master
equation takes the form

dP~n,t !

dt
5r n11P~n11,t !1gn21P~n21,t !

2~r n1gn!P~n,t !. ~3!
f

y

e

e

y

n

is

Equation~3! is only valid for values ofn not on the boundary
~i.e., for nÞ0 andnÞN); for these values special equation
have to be written, reflecting the fact that no transitions
of region@0,N# are allowed. However, from Eqs.~1! and~2!
we see thatgN50 andr 050, and if additionally we define
r N1150 and g2150, then Eq. ~3! holds for all n
50,1, . . . ,N. To completely specify the system we als
need to give an initial condition, which will typically hav
the formP(n,0)5dn,m for some non-negative integerm.

We will end this section by determining the stationa
probability distribution,Ps(n). Setting dP(n)/dt50, one
obtains

r n11Ps~n11!2gnPs~n!5r nPs~n!2gn21Ps~n21!.
~4!

This is true for all n, which implies that r nPs(n)
2gn21Ps(n21)5J, where J is a constant. Applying the
boundary condition atn50, we find thatJ50, and, there-
fore,

r nPs~n!5gn21Ps~n21!, n50,1, . . . ,N. ~5!

If mÞ0, thenr nÞ0 for all n, such that 0,n<N, and there-
fore

Ps~n!5
gn21gn22•••g0

r nr n21•••r 1
Ps~0!, n51, . . . ,N. ~6!

The constantPs(0) can be determined from the normaliz
tion condition

(
n50

N

Ps~n!5Ps~0!1 (
n.0

Ps~n!51, ~7!

→„Ps~0!…21511 (
n51

N
gn21gn22•••g0

r nr n21•••r 1
. ~8!

At this point it is convenient to introduce a set of combin
tions of the constants of the model which will appear fr
quently in the analysis. These are

m* 5m/@~12m!SC* #, l* 5m* ~N21!,

~9!

n* 5N1m* ~N21!~S21!.

The transition probabilities~1! and ~2! may now be written
in the more compact forms

gn5
C* ~12m!

N~N21!
~N2n!~l* 1n!,

r n5
C* ~12m!

N~N21!
n~n* 2n!. ~10!

Substituting Eq.~10! into Eq. ~8! gives
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„Ps~0!…215 (
n50

N S N
n D G~n1l* !

G~l* !

G~n* 2n!

G~n* !

5 (
n50

N S N
n D ~21!n

G~n1l* !

G~l* !

G~12n* !

G~n112n* !
.

~11!

This sum takes the form of a Jacobi polynomialPN
(a,b)(x)

@12#, with a52n* , b5l* 1n* 2(N11) and x521,
which can itself be expressed in terms of gamma functi
for this value ofx. So, using Eq.~6!, we find

Ps~n!5S N
n D G~n1l* !

G~l* !

G~n* 2n!

G~n* 2N!

G~l* 1n* 2N!

G~l* 1n* !
.

~12!

In various intermediate expressions we have assumed than*
is not an integer, but this final result is well defined for
meaningful ranges of the parameters, since, from Eq.~9!, we
can see thatn* .N andl* .0. MoreoverPs(n).0 for all
n50,1, . . . ,N and (nPs(n)51 by construction. By intro-
ducing the beta functionb(p,q)5G(p)G(q)/G(p1q), the
stationary, normalized solution can be written in the mo
compact form

Ps~n!5S N
n D b~n1l* ,n* 2n!

b~l* ,n* 2N!
. ~13!

Finally, if m50, r N50, so Eq.~6! no longer holds forn
5N. Using the result thatg050 in this case, one finds tha
Ps(n)50 for n51, . . . ,N21. By normalization we can
write Ps(0)5C andPs(N)512C, whereC is a constant. So
as mentioned earlier, either speciesA is the only surviving
species or it goes extinct. In other words, in the station
state only one species survives. Since all species are ass
identical, it follows that, whenm50,

Ps~0!5
1

S
, Ps~N!512

1

S
, Ps~n!50 for 0,n,N.

~14!

Although we have obtained the exact solution for the stati
ary distribution@Eq. ~12!# in terms of nothing more compli
cated than gamma functions, we still need to simplify it if w
are to compare the result with data. In Sec. III, we will deri
simpler forms for the stationary probability distributio
which are valid in different regions of the parameter space
the model, and compare these with simulations.

III. STATIONARY STATE

We have so far been discussing the stationary state f
the point of view of a time-independent solution of the ma
ter equation. But let us now ask the question in a biologi
context: are ecological communities in stable equilibria?
though is obvious that environmental variability and chan
have a great impact on ecosystems, some well-defined, t
independent, patterns arise when natural ecosystems ar
served. The model we have introduced reaches a w
established dynamic stationary state which allows us to st
some of these patterns. A particular example of interest is
s
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ed
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e
e-
ob-
ll-
y
e

way that individuals are distributed among species. In a
island where colonization from the mainland and local e
tinction take place, a dynamical equilibrium between the
two processes is reached@13#. In these situations our mode
applies and can help to understand the patterns observe

Highly diverse ecological communities are formed wh
a large number of different species are present. The est
tion and characterization of such biological diversity is n
only a central issue in theoretical ecology, but also a ques
of practical concern for nature reserve design and conse
tion biology in general. In any ecological community, sp
cies vary considerably in the number of individuals that b
long to that species. Some species are very difficult to fi
because they are very rare. Some of them are extremely c
mon. How are individuals distributed among species? W
factors affect this distribution? The classic way of studyi
this topic is by means of species abundance relations—
‘‘relations between abundance and the number of spe
possessing that abundance’’@14#. Different types of species
abundance relations have been used to fit to real spe
abundance data. Some of them have been justified on t
retical grounds~see Ref.@1# for a review!. One of the most
widely used species abundance distribution was first
cussed by Fisher, Corbet, and Williams in 1943@15#. The
distribution is defined by two parametersx anda,

S~n!5
axn

n
, ~15!

whereS(n) is the number of species havingn individuals.
Since Eq.~15! summed overn gives a logarithm, this is
known as the log-series distribution. It is very common a
sampling distribution in the ecological literature, although
was also derived on theoretical grounds@16,17#.

The abundance distribution that has received more at
tion from ecologists, however, was introduced by Preston
one of the most influential papers on ecological theory@18#
~also see Ref.@19#!. As May remarked, ‘‘theory and obser
vation points to its ubiquity onceS@1, when relative abun-
dances must be governed by the conjunction of a variety
independent factors’’@14#. The distribution is the log-norma
distribution, so called because the logarithm of species ab
dances is normally distributed,

S~R!5S~n0!expS 2
R2

2r2D , ~16!

where, following Preston’s definitions,R5 log2(n/n0) is a
logarithmic measure of the abundance in relation ton0—the
abundance value where the distribution has its maximum
S(R)dR is the number of species having their logarithm
relative abundance betweenR and R1dR. Note that both
Eqs. ~15! and ~16! must be divided by the total number o
species to be properly understood as estimations of the p
ability distribution function.

In this section we want to compare the exact result
Ps(n) with these two distributions—the most widely use
abundance distributions in the ecological arena. We will
rive simpler forms for the stationary probability distributio
which are valid in different regions of the parameter space
the model, and compare these with simulations of the or
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FIG. 1. Stationary probability
distribution Ps(n) obtained from
the exact solution@Eq. ~13!# ~solid
line! and the log-series approxi
mation @Eq. ~21!# ~dotted line!,
with the simplest form for the
multiplicative factorK @Eq. ~23!#,
for different immigration values.
In each plot the species relativ
abundance distribution resultin
from the individual based mode
is also shown~noisy solid line!.
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nal model~that is, without making the mean-field approx
mation!. Log-normal and log-series distributions will natu
rally emerge for different well-defined immigration regime
In a forthcoming paper we will analyze a large quantity
species abundance data from different ecological comm
ties in detail.

We begin by discussing one situation in which the lo
series distribution occurs. It turns out to be convenient
rewrite result~12! for Ps(n) by breaking it down into three
separate parts:

Ps~n!5F1~n!F2~N!F3~n,N!, ~17!

where

F1~n!5
G~n1l* !

n!G~l* !
,

F2~N!5
G~n* !

G~l* 1n* !

G~@n* 2N#1l* !

G~n* 2N!
@5Ps~0!#,

~18!

F3~n,N!5
N!

~N2n!!

G~n* 2n!

G~n* !
.

We will now give a simpler form for each of these expre
sions, being careful to state the range of validity of our a
proximations in each case. Details of the derivation of th
results is given in Appendix A. A nontrivial behavior occu
for relatively small values ofn, so in what follows we will
only be interested in values ofn up to nmax, where nmax
!N and N@1. We will also suppose that there are ma
possible species:S@1.

From Eqs.~A5! and ~A3!, we have that

F1~n!'
l*

n
, n*1, l* !

1

ln nmax
, ~19!
.
f
i-

-
o

-
-
e

and

F3~n,N!'exp~2nl* S/N!, l* S!N, l* S!S N

nmax
D 2

.

~20!

Therefore, Eqs.~17!–~20! give

Ps~n!5Kn21 exp~2nm* S!, ~21!

whereK[l* Ps(0). This is the log-series equation~15! with
x5e2m* S and expressed as the fraction of species rep
sented byn individuals in the steady state. Note that E
~15!, by contrast, gives the absolute number of species wi
given abundancen.

SinceS,N, the conditionl* S!N is redundant when the
stronger conditionl* !1/lnnmax is imposed. Therefore, Eq
~21! holds when

1&n<nmax!
N

Al* S
and l* !

1

ln nmax
. ~22!

To find an approximate form forK, we use Eq.~A7!, which
gives an approximate form forPs(0)5F2(N). Under the
very reasonable conditions thatl* is much less thanN/S,
AN, andS, but with l* S*1, we find

K'l* ~m* S!l* . ~23!

Figure 1 shows the results of different simulations whi
have been performed for increasing values of the immig
tion parameter. In order to calculate the species rela
abundance distribution, an ensemble average has been
formed. For each plot a collection of 2000 replicas has b
simulated. For each replica the probability distributio
P(n,t) has been calculated after 500 000 simulation ti
steps. In Fig. 1, thel* values increase from 0.033 whenm
50.001 to 3.3 whenm50.1. The last three plots do no
show such a good match with the log-series approxima
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FIG. 2. Abundance distribu-
tions for two individual-based
simulations are presented for tw
extreme values of the immigration
parameter. Time is measured i
simulation time units. The station
ary distribution Ps(n) is also
shown in both cases.
e
nl

a

n
u
e

ilit
, a
as the first three. Even in the upper three plots, where th
appears to be a good fit with the log-series, we would o
expect a complete match for 1,n&10. From Eq.~22!, we
should bear in mind that this is only expected to be true
long as l* !1/lnnmax. For instance,l* 50.22 for m
51022 ~for the parameter setN55000, S5300, andC
50.5), and 1/lnnmax is 0.434 whennmax510.

In Fig. 2 two simulation results are displayed. The statio
ary solution is also shown in both cases for comparison p
poses. The stationary solution is calculated numerically
ther by direct application of Eq.~12!, as done in Fig. 1, or by
means of an algorithm that can find the stationary probab
distribution of any one-step stochastic process if it exists
in Fig 2. This algorithm is based on the subroutineTRIDAG

@20#. To describe this, we first write the master equation~3!
in the more general form
re
y

s

-
r-
i-

y
s

dP~n,t !

dt
5 (

nÞn8
Wn,n8P~n8,t !2 (

nÞn8
Wn8,nP~n,t !,

~24!

where r n5Wn21,n and gn5Wn11,n . If we now introduce
Wn,n85(12dn,n8) Wn,n82dn,n8(n9ÞnWn9,n and the vector
PW (t)5@P(1,t), . . . ,P(N,t)#, Eq. ~24! may be written in the
matrix form

d

dt
PW 5W•PW . ~25!

Finding the stationary stationary distributionPs(n)— the
vector PW s5@Ps(0), . . . ,Ps(N)#—-is then equivalent to
solving a system ofN11 linear equationsW•PW s50 in N
r
ber

is

wn

ty
FIG. 3. Species-connectivity relationship fo
different parameter values. The expected num
of species in the system in the steady state
shown plotted against the connectanceC* . Note
that as long asl* S remains close to but slightly
greater than 1, a very good agreement is sho
between the exact form@Eq. ~26!# ~single line in
the plot! and the hyperbolic species-connectivi
relationship@Eq. ~27!# ~double line!.
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FIG. 4. Species-connectivity relationship
Two simulations are presented. Standard dev
tions from the ensemble average value are sho
In the plot on the left,l* S.25—too high a
value to fit the approximation given by Eq.~27!.
So in this case the only plotted curve is the exa
mean-field relation@Eq. ~26!#. In the plot on the
right, conditions needed to apply Eq.~27! are
quite well fulfilled and two curves are plotted: th
exact mean-field relation~solid line! and the ap-
proximation~dotted line!.
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11 unknowns:Ps(n), n50, . . . ,N. In any one-step stochas
tic process the matrixW is tridiagonal. Our algorithm take
advantage of this feature to solve the system.

Another quantity which is useful in comparing model pr
dictions to data is the average number of species in the
tionary state, which we denote bŷS&. Let Pi(n) be the
probability that there aren individuals of speciesi in the
ecosystem. Therefore, the probability that there is at le
one individual of speciesi is 12Pi(0) and so the averag
number of species iŝS&5( i@12Pi(0)#. Within the mean
field approximationPi(0) is the same for all speciesi,
Pi(0)5Ps(0) ~the subscripts denotes ‘‘stationary,’’ as be
fore!, so that

^S&5(
i 51

S

@12Ps~0!#5@12Ps~0!#S. ~26!

Under the conditionsl* S*1, l* !e andu ln C* u!uln mu, we
show in Appendix A that@see Eq.~A10!#

^S&;~C* !211e, ~27!

where e21'u ln mu ~see Fig. 3!. Inverting this relationship
gives C* ;^S&211h, with h5e/(e21). The condition
l* S*1 is essentially equivalent tomN*1 ~for a con-
nectance that is not too small!. For systems of interestN is
very large, and hencem must typically be very small if the
ta-

st

hyperbolic relation@Eq. ~27!# is to hold. Such a tiny value o
m means thate, and henceh, will be close to zero. The form
of the relationship betweenC* and ^S& when the immigra-
tion parameter has a larger value will be discussed e
where.

In Fig. 4 the species-connectivity relationship calculat
from the individual modeling approach is shown. After ca
rying out 600 000 simulation steps, a 1000 ensemble ave
was calculated for each connectivity value. The initial co
dition is the empty system. Although our mean-field appro
mation captures the essentials of the hyperboliclike beha
of the species-connectivity relationship, there is a system
deviation from the mean-field prediction in the simulat
curves.

To sum up, the exact solution given in Eq.~13! admits a
log-series representation for low immigration regimes. F
these low immigration values a hyperboliclike relation
also observed between the mean number of species in
stationary state and the connectivity level given by t
trophic relationships predefined in the community matrixV.
We will now argue that the exact stationary distributio
probability is also very well approximated by a log-norm
distribution for intermediate to high immigration regimes
shown in Figs 5 and 2.

The idea behind the analysis we will present is to find
which values ofn, if any, Ps(n) has a maximum. We then
expandPs(n) about this maximum to see to what extent th
n

FIG. 5. Log-normal approximation~the long-
dashed curves! for the exact stationary solution
@Eq. ~13! ~solid line curves!. The parameter val-
ues that have been used areN5100000, S
5300, andC50.5. The Gaussian approximatio
~dotted curves! is also shown.
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function can be analytically described by a log-normal d
tribution.

First of all, from Fig 5, we can see thatPs(n) may admit
a Gaussian representation for some parameter values. S
us look at this case first, before discussing the log-nor
situation. To investigate for what parameter values this m
occur, we first find the position of the maximum ofPs(n). It
is more convenient to consider lnPs(n) rather thanPs(n).
From Eq.~12!, we obtain

dln Ps~n!

dn
52c~n11!1c~n1l* !

2c~n* 2n!1c~N2n11!, ~28!

where

c~z![
d ln G~z!

dz
.

Setting Eq.~28! equal to zero gives the maximum value
Ps(n) at n5n̂. If all arguments of the psi functions can b
considered to be large enough, which is true ifn!N but
reasonably large~e.g.,n*100), these functions can be a
proximated usingc(z); ln z @12#. So

d ln Ps~n!

dn
'2 ln~n11!1 ln~n1l* !

2 ln~n* 2n!1 ln~N2n11!50, ~29!

from which one finds that the maximum is given by

n̂5
~N12!~l* 21!

l* S22
21. ~30!

From Eq.~30! we can see that ifl* S,2 ~very low immi-
gration regimes!, the numerator and denominator are bo
negative, and a maximum exists. However, this is inadm
sible, since it violates the conditionn̂!N. Therefore, a nec-
essary condition for the existence of a maximumn̂ is that
l* .1.

Now, we perform a Taylor expansion of Eq.~12! aboutn̂
to quadratic order. Ifn5n̂1dn, then, fordn small,

ln Ps~n!5 ln Ps~ n̂!1
1

2

d2 ln Ps~n!

dn2 U
n5n̂

~n2n̂!21O~dn!3.

Sincen̂ is a maximum,d2 ln Ps(n)/dn2un5n̂,0, and so we se
this equal to21/s2. Then ignoring theO(dn)3 terms and
exponentiating gives

Ps~n!5Ps~ n̂!expS 2
~n2n̂!2

2s2 D . ~31!

Under this approximation (n!N, but reasonably large! it is
not very difficult to derive an analytical expression for t
variance:
-

let
al
y

-

s5
An̂21~l* 11!n̂1l*

Al* 21
. ~32!

Since the Gaussian distribution is completely specified
its first two cumulants, fixingn̂ and s, given by Eqs.~30!
and ~32!, respectively, determines the entire curve. The d
ted lines in Fig. 5 show this curve, i.e., Eq.~31!, with the two
parameters fixed by Eqs.~30! and~32!. The upper two plots
show very good agreement with the exact mean-field
proximation; in the lower two plots the agreement is not
good.

To approximate the exact stationary solution as a l
normal distribution@Eq. ~16!#, we will proceed in a similar
way. Equation~16! can also be written dividing by the tota
number of species as

P~R!5N expS 2
R2

2r2D 5N expS 2
~ ln n2 ln n0!2

2s2 D ,

~33!

wheres5r ln 2, and whereN is a normalization constant to
be determined. So let us express solution~12! as a function
of ln n instead ofn. After this change of variable a new
equivalent, probability distribution function arises,P(x),
wherex5 ln n, that has to satisfyPs(n)dn5Ps(x)dx, or, in
other words,

Ps~x!5
dn

dx
Ps~n!5nPs~n!, ~34!

which implies that

d ln Ps~x!

dx
511ex@2c~ex11!1c~ex1l* !

2c~n* 2ex!1c~N2ex11!#. ~35!

Setting Eq.~35! equal to zero, and usingx5 ln n, we obtain
the position of maximum by finding the zero,n0, of the
equation

@c~n11!2c~n1l* !1c~n* 2n!2c~N2n11!#5
1

n
.

In exactly the same way as for the Gaussian case, we
write the Taylor expansion up to second order,

ln Ps~x!5 ln Ps~x0!2
1

2s2
~x2x0!2,

or, equivalently,

Ps~x!5Ps~x0!expS 2
~ ln n2 ln n0!2

2s2 D ,

where x05 ln n0. Finally, using Eq.~34!, we obtain a log-
normal expression for the mean-field solution,

Ps~n!5
K

n
expS 2

~ ln n2 ln n0!2

2s2 D , ~36!
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FIG. 6. The expected value for the number
species and the Shannon entropy as a measur
diversity is computed at the steady state using
stationary distribution@Eq. ~13!# for increasing
values of immigration parameter. Ensemble av
ages of these two quantities are also shown
increasing discrete values of the same parame
1000 replicas of the model have been simulate
Values for the number of species and Shann
entropy have been recorded after 500000 simu
tion time steps, when the system has reache
stationary state.
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whereK5n0Ps(n0).
The evaluation of the second derivative atx5x0 allows us

to fix a value for the variances2:

1

s2
512~n0!2@2c8~n011!1c8~n01l* !

1c8~n* 2n0!2c8~N2n011!#.

Although in this case there is no way to derive a simple,
sufficiently general, analytical expression for the maximu
n0 and the variances2, in Fig. 5 we use the asymptoti
series expansion forc(z) @12# to calculate numerically both
quantities. Once again, since the log-normal distribution
completely specified byn0 and s2, fixing these fixes the
entire curve. The figure shows that the log-normal appro
mation matches the exact solution well for intermediate
high immigration regimes. We also note that, in general,
log-normal distribution is a better fit to the exact soluti
than the Gaussian.

Log-normal and log-series distributions have been u
by ecologists to fit real abundance data for ye
@15,18,19,2,1,21#. Our results show that it is possible fo
both distributions to stem from the same general ecolog
process under different immigration regimes. If, for instan
we counted species abundances in a small area with
wood, the log-normal distribution would probably aris
since that area is no doubt weakly isolated from the res
the wood by external immigration. The same experiment p
formed in a rather isolated area might be expected to g
rise to an empirical relative abundance distribution well
ted by a log-series function.

Finally, in this section we calculate the diversityH of the
ecosystem~also called the Shannon entropy! for our model
in the stationary state. This is defined by

H52(
i 51

S

pi ln pi , ~37!

wherepi is the probability that an individual selected at ra
dom from the system belongs to speciesi @1#. Clearly, pi
5ni /N, whereni is the number of individuals of speciesi in
the stationary state. On the other hand, within our mean-fi
t

s

i-
o
e

d
s

al
,
a

f
r-
e

-

ld

approach, the quantity which we can calculate isPs(n)—the
probability that a typical species will haven individuals in
the system when it is in the stationary state. Since the n
ber of species withn individuals in the system is jus
SPs(n), we may express Eq.~37! within our approximation
as

H52(
n

SPs~n!~n/N!ln~n/N!. ~38!

Multiplying Eq. ~3! by n and summing, it is easy to find tha
^n&5N/S in the stationary state. Using this result we hav

H52
S

N (
n

Ps~n!n~ ln n2 ln N!

52
S

N
$^n ln n&2^n& ln N%

5 ln N2
S

N
^n ln n&. ~39!

Therefore, we only need to evaluate^n ln n& in the stationary
state to findH. Figure 6 shows the result of performing th
evaluation using the stationary probability distributio
Ps(n), for increasing values of the immigration parame
m. For comparison purposes, direct computation of the
erage number of species and the average entropy for 1
replicas of the model and its standard deviation is shown
can be seen that for relatively low immigration rates the s
tem tends to be saturated, admitting as many species as
sible. As immigration increases, the Shannon entropy gro
steeper than the number of species does, meaning that im
gration tends to equalize the number of individuals of diffe
ent species first, rather than increase the actual numbe
species in the system.

In Figs. 4 and 6 it can be seen that ensemble aver
curves for the expected number of species in the station
state deviate systematically from the mean-field approxim
tion that we have implemented through the master equa
~3!, even though they show the same qualitative behav
The explanation for this slight disagreement comes from
way we are estimating the probability of an effective inte
action within the system. When transition probabilities a
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discussed@Eqs.~1! and ~2!#, the probability of interaction is
split into a product of the probability of picking two potenti
interacting individuals multiplied by the probability of hav
ing an actual link between the species they belong to. H
ever, these two events are not independent. The assum
of independence is just an approximation that allows us
simplify the system and gain some insight into the dynam
processes that take place during simulations. In particu
for any parameter choice, the individual-based model
more interactions than expected, and cannot maintain
same number of species as predicted by our mean-field
proximation.

IV. TIME DEPENDENCE

What can our model say about the assembly of an e
logical community? Whenever species colonize a new isl
or any empty space, a new community builds up fro
scratch. The process that takes place is called successio
ecologists. The assembly of an ecological community
been studied both from theoretical and empirical points
view. Many patterns have been found during the proces
ecological succession~see Ref.@22# for a review!. For in-
stance, the number of species grows in a particular way
depends on the immigration from a biogeographical spe
pool. If our model is to make any prediction about succ
sion, simulation time must have a direct meaning in terms
physical time. In our model the only connection to physic
time comes from the immigration parameter, but the mo
in fact has two time scales. The external one is defined by
flux of individuals from the biogeographical pool and th
internal one is defined by the flux of individuals~birth-death
process! as a consequence of the internal dynamics~pairwise
random encounters! within the system. Our immigration pa
rameter captures the relative importance of these two dif
ent temporal processes.

Therefore, having investigated the properties of the s
tionary state in Sec. III, we now move on to a study of t
time evolution of the system within the mean-field appro
mation. The master equation~3! has transition probabilities
gn andr n which are nonlinear inn, so that an exact solution
for the time-dependent behavior is not possible. Howev
since in the problem of interestN is very large, the possibil-
ity of performing a large-N analysis suggests itself. In thi
section we will describe the application of such
analysis—specifically van Kampen’s large-N method@10#—
to our model. This method has a number of attractive f
tures, for instance, the macroscopic~i.e., deterministic! equa-
tion emerges naturally from the stochastic equation a
leading order effect inN, with the next to leading order giv
ing the Gaussian broadening ofP(n,t) about this average
motion. The method was clearly presented in Ref.@10#, so
we will only give a brief outline of the general idea an
stress the application to the model of interest in this pap

If we take the initial condition on Eq.~3! to be P(n,0)
5dn,m , we would expect, at early times at least,P(n,t) to
have a sharp peak at some value ofn ~of order N), with a
width of order N3N21/25N1/2. It is therefore natural to
transform from the stochastic variablen to the stochastic
variablej by writing

n5Nf~ t !1N1/2j ~40!
-
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wheref(t) is some unknown macroscopic function whic
will have to be chosen to follow the peak in time. A ne
probability distributionP is defined byP(n,t)5P(j,t),
which implies that

Ṗ5
]P

]t
2N1/2

df

dt

]P

]j
. ~41!

The master equation~3! may be written

Ṗn5~E21!r nPn1~E 2121!gnPn , ~42!

where E (E 21) is an operator which changesn into n
11 (n21), e.g., if f n is an arbitrary function ofn, then
Ef n5 f n11. In terms ofj,

E 61516N21/2
]

]j
1

1

2!
N21

]2

]j2
1•••. ~43!

Using Eqs.~40!–~43! the original master equation forP(n,t)
can be rewritten as an equation forP(j,t). By rescaling the
time according tot5t/N, a hierarchy of equations can b
derived by identifying terms order by order in powers
N21/2. The first two of these are

df

dt
5a1,0~f! ~44!

and

]P

]t
52a1,08 ~f!

]

]j
~jP!1

1

2
a2,0~f!

]2P

]j2
, ~45!

where

a1,0~f!5
m

S
2mf,

~46!

a2,0~f!52C* ~12m!f~12f!1
m

S
1

m

S
~S22!f.

The first equation@Eq. ~44!# is the macroscopic equation fo
f(t). It is easily solved to give

f~t!5f~0!e2mt1
1

S
~12e2mt!. ~47!

Initially we ask that j(0)50, which means thatf(0)
5n(0)/N5m/N. Going back to thet variable gives

f~ t !5
m

N
e2mt/N1

1

S
~12e2mt/N!. ~48!

The second equation@Eq. ~45!# is a linear Fokker-Planck
equation whose coefficients depend on time throughf given
by Eq. ~48!. It is straightforward to show that the solution t
this equation is a Gaussian and so it is only necessar
determinê j&t and^j2&t to completely characterizeP(j,t).
By multiplying Eq. ~45! by j andj2, and using integration
by parts, one finds@10#
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FIG. 7. Temporal evolution of
the relative abundance distributio
P(n,t). The parameter values ar
N51000, S550, C50.4, andm
50.001. An individual-based
simulation, the numerical integra
tion of P(n,t) at two successive
times, and the exact stationary so
lution are also presented~inset!.
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]t^j&t5a1,08 ~f!^j&t ,
~49!

]t^j
2&t52a1,08 ~f!^j2&t1a2,0~f!.

In our case]t^j&t52m^j&t , and so

^j&t5^j&0e2mt50, ~50!

since we have already assumed that^j&050. A straightfor-
ward, but tedious, calculation now gives

^j2&t5
~h1m!

m

~S21!

S2
@12e22mt#

1A~2h1m!

m

~S22!

S
e2mt

3@12e2mt#22hA 2te22mt, ~51!

whereh5C* (12m) andA5(m/N)2(1/S).
We have already commented that the solution of Eq.~45!
is a Gaussian. Specifically,

P~n,t !5
1

A2pN^j2&t

expS 2
@n2Nf~ t !#2

2N^j2&t
D , ~52!

where ^j2&t and f(t) are given by Eqs.~51! and ~48!, re-
spectively. In Figs. 7 and 8 a comparison between the n
merical integration of the master equation and the Gaus
solution for different times is shown. The Gaussian behav
is lost for large times. In Fig. 8 the Gaussian behavior
maintained longer due to a higher immigration rate; as
immigration rates increase still further, the Gaussian fo
persists for even larger times.

In order to compare the time behavior of the mean-fi
approach introduced in this work through the master eq
tion ~3! with the time behavior of the individual-based mod
~IBM ! defined by the rules presented in Sec. I, one sho
carefully define what is meant by time. Individual-bas
n
e

f
e
s.

e

FIG. 8. Temporal evolution of
the relative abundance distributio
P(n,t). The parameter values ar
N51000, S550, C50.4, andm
50.01. The temporal evolution o
the variance and the averag
abundance computed using Eq
~51! and ~48!, respectively, and
that from the master equation, ar
also shown~inset!.
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FIG. 9. Time evolution of the
number of species in the system
The individual-based simulation
match the expected value from th
master equation. The system star
with no species. During the sto
chastic assembly process the num
ber of species fluctuates, but th
average behavior is captured b
the mean field approach repre
sented by the master equation~3!.
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simulations are performed by the iteration of an algorith
from the first step up to a given number of updating steps
Sec. I, such an updating step was defined as a time unit
us call it the simulation time unit. In Ref.@5# a different
operational choice was made. Whatever the convention
clear distinction must be made between the simulation t
and the physical time needed to compare simulation res
with either the numerical integration of the master equat
~3! or the large-N solution derived in this section. The que
tion then arises: how is physical time to be tracked in a
stochastic realization of the IBM? To analyze this point
will follow an argument given by Renshaw@23#. At any time
t, the probability of an event occurring in the system can
estimated. Such a probability depends on the system con
ration, i.e., the abundance of all present species, and on
relative immigration ratem in relation to the internal dynam
ics rate 12m. Both rates have dimensions ofT21. Obvi-
ously, it also depends on the other parameters of the m
(N, S, andC). Although the method described in Ref.@23#
estimates every transition probability rate for all possi
events in the system, there is no need to estimate the p
ability of this rather high number of possible events. The
are only two relevant temporal processes: immigration
internal dynamics. Thus, it is enough to consider two diff
ent possibilities.

~1! An immigration eventI occurs if any species from th
pool happens to enter the system. The probability of a p
species entering the system in any smalldt is

Pr$I %5r I~ t !dt,

where the immigration rate is

r I5
m

S (
i 51

S S 12
ni~ t !

N D .

~2! An internal dynamics eventD occurs when the inter
action between a pair of individuals from two potentia
interacting species gives rise to a change in their abundan
The probability of such an event occurring in any smalldt
can be written as

Pr$D%5r D dt,

where the internal dynamics rate is

r D5~12m!(
i 51

S

(
j PG( i )

ni~ t !

N

nj~ t !

N
,

n
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e
lts
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e
u-
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and whereG( i ) must be understood as the set of specie
different from i—that are connected toi through the pre-
defined interaction matrixV.

Since the two events defined are independent from e
other, the probability of occurrence of any one of them
any smalldt is

Pr$I øD%5~r I1r D!dt.

When an event occurs there is a change in the actual
figuration of the system either by immigration or by intern
dynamics and the rates must be calculated again. So,
proximately, on average the number of such effective eve
in any time interval of lengtht would be (r I1r D)t, and
would be distributed as a Poisson random variable with t
mean. The important point is that now the probability
having no events in any time interval of lengtht, i.e, for any
time between 0 andt, can be written as:

Pr$0%5e2(r I1r D)t. ~53!

According to Eq.~53!, the probability of having at least on
event is 12e2(r I1r D)t—the cumulative probability distribu-
tion for an exponentially distributed random variable. The
fore, the time to the next event is an exponentially distribu
random variable with expectation 1/(r I1r D). Then we
should sample that distribution in order to predict when
next effective event will take place. Accumulating these
terevent times during simulations, we are able to track
physical time, which have the same units as@r I1r D#21, so
the same time units which arise in the master equation~3!.

In Fig. 9, the time evolution of the number of species
the system is shown. Different stochastic realizations of
IBM are presented. The numerical integration of the mas
equation allows an estimation of the expected number
species at any time in the system^S& through Eq.~26!. The
average behavior of the different stochastic simulations
well captured by the prediction given by Eq.~26!, where
P(0,t) is computed at each numerical integration time ste

In Fig. 10 the probability of having a species represen
by n individuals at particular early timesP(n,t) is plotted. It
has been computed by performing a numerical integration
the master equation~3! ~dotted line! and by means an en
semble average for the individual-based model after 5
simulation time steps. Two extremely different initial cond
tions have been used. In the first one, there are no speci
the system at time 0. Species enter the system and e
establish themselves in it or not, performing what could
called a stochastic community assembly. In the second in
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FIG. 10. Individual-based model and the tem
poral evolution ofP(n,t). Comparison between
the mean-field approach~dotted line! and a 2000
ensemble average after 5000 simulation tim
steps for random mixture and empty system in
tial conditions. In the first case, two different nu
merical integrations have been performed fort
59946 and 10400. In the second case, just o
numerical integration has been performed untit
56725. The reason for these different times
that 5000 simulation updating steps can repres
more or less physical time depending on the in
tial configuration of the system.
qu
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state, all species are represented in approximately e
numbers. Obviously, the one-humped distributions are
tained when the initial condition is a random mixture of sp
cies, which is represented byP(n,0)51 if n5N/S and
P(n,t)50 if nÞN/S in the master equation approach. T
purely decreasing distributions are obtained when the in
state is a completely empty system. The agreement betw
the mean-field approach represented by the master equ
and the simulations is seen to be reasonable.

As shown in Figs. 7 and 8, eventually, the probabil
distribution deviates from a Gaussian. While it is true th
one could in principle calculate these non-Gaussian eff
using van Kampen’s approach~by taking higher order terms
in N21/2 into account!, the method becomes increasing
cumbersome. Therefore, in Sec. V, we adopt a totally diff
ent approach to the calculation of time dependence, whic
able to give information aboutP(n,t) at late times.

V. GENERATING FUNCTION

The technique we will use to probe the time depende
of P(n,t) in this section is based on the solution of t
differential equation satisfied by the generating function

F~z,t !5 (
n50

N

P~n,t !zn ~54!

for our model in the mean-field approximation. Starting fro
Eq. ~3! the derivation of this equation proceeds along st
dard lines@10,11# to yield

]F

]s
52z~12z!2

]2F

]z2
1~12z!~a1bz!

]F

]z
2g~12z!F,

~55!

where we have introduced a new time

s5zt where z5
C*

N~N21!
, ~56!

and where the constantsa, b, andg are defined by
al
-

-

l
en
ion

t
ts

-
is

e

-

a5n* 215l* ~S21!1N21,
~57!

b5l* 112N and g5Nl* .

The conditions onF are

F~1,t !51 and F~z,0!5zm, ~58!

and follow from the normalization condition(nP(n,t)51
and the initial conditionP(n,0)5dn,m respectively.

The partial differential equation~55! is separable: if we
write F(z,s)5S(s)F(z), then S(s)5e2ls, where l is a
constant. The equation forF is then

z~12z!2
d2F

dz2
2~12z!~a1bz!

dF

dz
1g~12z!F5lF.

~59!

This can be brought into a more standard form by the cha
of variables

F5~12z!Nf and u5
1

12z
. ~60!

The new form of the equation is

u~12u!
d2f

du2
1@c2~a1b11!u#

df

du
2abf50, ~61!

where

a1b512l* 2N2n* ,
~62!

ab5N~l* 1n* 21!2l and c512l* 2N.

The reason for making transformation~60! is that Eq.~61! is
the standard form for the hypergeometric equation@12#,
which has the two independent solutions:

fl
(1)5u2aF~a,a2c11,a2b11;u21!,

~63!
fl

(2)5u2bF~b,b2c11,b2a11;u21!.
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Now u21512z, and so in terms of the original variables

Fl
(1)5~12z!N1aF~a,a2c11,a2b11;12z!,

~64!
Fl

(2)5~12z!N1bF~b,b2c11,b2a11;12z!.

The general solution to Eq.~55! is then

F~z,t !5(
l

$vlFl
(1)1wlFl

(2)%e2lzt, ~65!

where$vl% and$wl% are sets of arbitrary constants.
To determine the arbitrary constants in Eq.~65!, condi-

tions ~58! have to be implemented. The details are given
Appendix B, where it is shown that the required solution

F~z,t !5 (
k50

N

wk~12z!k

3F~k2N,k1l* ,2k1l* S;12z!

3e2k(k1l* S21)zt, ~66!

where the constants$wk% are determined by

(
k50

n

wk~21!n2kS N2k
n2k D G~n1l* !G~2k1l* S!

G~k1l* !G~n1k1l* S!

5H ~21!nS m
n D if n<m

0 if n.m.
~67!

This equation holds for all allowed values ofn (n
50,1, . . . ,N). We therefore haveN11 linear conditions for
n

the N11 constantswk (k50,1, . . . ,N), and so can deter
mine them uniquely. Thus, Eq.~66! together with Eq.~67!
provide a complete solution to the partial differential equ
tion ~55!.

Although the solution is not in closed form, it is possib
to obtain thewk for small values ofk rather easily. Forn
50, Eq. ~67! involves onlyw0, for n51 only w0 and w1,
and so on. The expressions for the first three constants

w051, w15
N

S
2m,

w25
~N21!~11l* !

~21l* S!
FN

S
2mG

2
N~N21!

2S

~11l* !

~11l* S!
1

m~m21!

2
, ~68!

the result forw0 confirming what we already knew. Thes
results are very useful because, as is clear from Eq.~66!, the
large-time behavior of the system is governed by small v
ues ofk. In this case, as we will now show, an explicit form
for P(n,t) can be found.

To find P(n,t) we have to identify the coefficient ofzn in
Eq. ~66!. In Appendix B it is shown that this leads to

P~n,t !5 (
k50

N

wkx~n,k!e2k(k1l* S21)zt, ~69!

where
pose we
ystem.
x~n,k!5 (
r 5max$n2k,0%

r 5min$N2k,n%

~21!n2r S k
n2r D S N2k

r D
3

G~r 1k1l* !

G~k1l* !

G~n* 2r !

G~k1n* 2N!

G~2k1l* 1n* 2N!

G~k1l* 1n* !
. ~70!

This result appears to be rather complicated, but fortunately it simplifies in many cases of interest. For instance, sup
wish to find P(0,t): the time evolution of the probability that there are no individuals of the species present in the s
Sincex(0,k) has only one term in the sum (r 50),

P~0,t !5G~n* !(
k50

N

wk

G~2k1n* 1l* 2N!

G~k1n* 2N!G~k1n* 1l* !
e2k(k1l* S21)zt

5Ps~0!H 11w1

S~l* S11!

~S21!~l* S1N!
e2l* Szt

1w2

S~l* S11!~l* S12!~l* S13!

~S21!@l* ~S21!11#~l* S1N!~l* S1N11!
e22(l* S11)zt1•••J , ~71!
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FIG. 11. Temporal evolution
of the expected value for the num
ber of species in the system. A
truncated solution provided by Eq
~71! is shown~dashed lines!. Only
the first 20 wk coefficients have
been computed. The agreeme
with the numerical integration of
the master equation~bold lines!
becomes better and better th
larger the time is. ForN51000,
S550, and C50.4, such an
agreement is quite good even fo
early times.
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which describes the approach to the stationary state at l
times. In Fig. 11 the temporal evolution of the expect
number of species, estimated asS(t)5S@12P(0,t)# is
shown. The temporal solution provided by this method
exact as long as the total number of coefficients can be c
puted without numerical error. In Fig. 11 a truncated, a
proximated solution is compared with the straightforwa
numerical integration of the master equation. Compl
agreement is observed at large times.

If nÞ0, the large-time behavior ofP(n,t) still has a rela-
tively simple form,

P~n,t !5Ps~n!1w1x~n,1!e2l* Szt

1w2x~n,2!e22(l* S11)zt1•••, ~72!

wherex(n,1) has only two terms,r 5n21 andr 5n ~only
one if n50 or n5N), and x(n,2) has only three terms;r
5n22,n21, andn ~fewer if n50,1,N21, or N).
ge

s
-

-

e

In Fig. 12, the computation ofP(n,t) for n51, 2, 3, and
4 is shown. The solution is approximate because again
the first 20 wk have been considered, although Eq.~69!
would be an exact solution as long as all of the terms fr
k50 to k5N could be summed without numerical error. F
practical reasons this is obviously not possible. In particu
at early times, the truncation of Eq.~69! introduces errors in
P(n,t). The same is true whenn is too large, because th
sums in Eqs.~67! and ~70! are too long to be compute
without errors, and some numerical instabilities arise.

VI. CONCLUSIONS

In this paper we have analyzed a model which has a st
ture which is rich enough to show many of the underlyi
patterns seen in real ecosystems, but is still sufficien
simple for a variant of the mean-field approximation to
applied to obtain analytical results. The most straightforw
o,
-

-

-

FIG. 12. Temporal evolution
of the probability of having any
species represented by one, tw
three, and four individuals com
puted directly from Eq.~69! in
dotted lines, where again a trun
cated solution is used~only the
first 20 wk are considered!, com-
pared with the numerical integra
tion of the master equation~bold
lines!. The initial condition is
P(n,0)5dm,n where m5500 in
the upper plot andm50 in the
lower one.
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question that can be asked concerns the nature of the sta
ary state. Within the mean-field approximation an exact fo
for this stationary distribution may be derived. We found th
this exact result reduced to a log-series distribution in
regime of low immigration, and to a log-normal distributio
in the regime of moderate to high immigration. These t
distributions have been discussed by ecologists for dec
as possible forms for the species abundance distributi
Our approach gives a clear interpretation of the parame
on which they depend. This fact has practical consequen
for conservation biology in order to determine the poten
richness (S), the global size~N!, and the degree of isolatio
(m) of a community. We have therefore shown ho
logseries and log-normal distributions can arise as two
ferent limits of a single distribution, a distribution which i
moreover, the stationary distribution of a well-motivat
ecological model. We also found evidence of a hyperbo
relation between the connectivity and the average numbe
species—the so-calledC* 2S relation. While we were able
to derive this result in the low immigration regime, there w
a small systematic derivation from the mean-field result a
the simulation curves.

While the stationary distribution is of considerable inte
est, the strength of the approach that we have adopted he
that predictions of the time evolution of the system are a
possible. An approximation based on the number of in
viduals in the system being large led to the picture ofP(n,t)
as an approximately Gaussian distribution broadening
moving with time. This behavior may persist for quite a lo
time, especially when the immigration rate is high, but ev
tually the Gaussian form is lost at large times. To explore
approach to the stationary distribution, a complimentary f
malism is required. Such a method is discussed in Sec
where a formal general solution for the temporal evolution
the probability of having any species represented byn indi-
viduals is given. This solutionP(n,t) is given as a series
expansion around the stationary state. In particular, suc
solution allows one to predict quite well how the number
species in the system increases with time during the stoc
tic assembly process.

In summary, we believe that this simple model has il
minated the general mechanisms at work in ecosystems,
has allowed us to understand the broad features of som
the universal phenomena seen in these systems. We
that the results presented here will motivate further w
both in the increasingly sophisticated stochastic modeling
ecosystems and in the interpretation of ecological data wi
a theoretical framework.
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APPENDIX A

In this appendix we will give details of the derivations
the simpler forms of the stationary distribution discussed
on-
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Sec. III. In our analysis, we will frequently make use of th
asymptotic form forG(z1a)/G(z) when z*1 and z@a.
Using Stirling’s approximation forz*1, one has that

G~z1a!

G~z!
5zaS 11

a

zD (z1a21/2)

exp~2a!

3F11P1~z!S a

zD1P2~z!S a

zD 2

1•••G ,
wherePi(z) are power series in 1/z. Therefore, if in addition
we impose the conditiona!z, then to a very good approxi
mation

G~z1a!

G~z!
'~11e!z(11e)zae2a, z*1, e5

a

z
!1.

~A1!

Note thata need not be small, it simply has to be much le
thanz.

Applying Eq. ~A1! to F3(n,N), one finds (N@1⇒n*
@1):

F3~n,N!5FG~N112n!

G~N11! G21FG~n* 2n!

G~n* !
G

'S N11

n*
D nH S 12

n

N11D 2(N112n)

3S 12
n

n*
D (n* 2n)J . ~A2!

The term in curly brackets is equal to 1, plus correctio
which are negligible ifnmax

2 l* S/N2!1 andl* S!N. There-
fore, under these conditions

F3~n,N!'S N

n*
D n

'exp2n lnS 11
l* S

N D
'exp~2nl* S/N!, ~A3!

usingS@1 andl* S!N again.
To find a simpler form forF1(n), we again apply Eq.

~A1!, but with the more stringent conditiona!1. It then
becomesG(z1a)/G(z)'za, and so, forl* !1 andn*1,

F1~n!5
1

nG~l* !

G~n1l* !

G~n!
'

l* nl*

n

5
l*

n
expl* ln n. ~A4!

If we now ask thatl* ln nmax!1, we have that

F1~n!'
l*

n
, n*1, l* !

1

ln nmax
. ~A5!

To estimatePs(0), we apply Eq.~A1! directly to F2(N) in
Eq. ~18!. Assumingl* S*1,
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F2~N!5FG~n* 1l* !

G~n* !
G21FG~@n* 2N#1l* !

G~n* 2N!
G

'S n* 2N

n*
D l* H S 11

l*

n*
D 2(n* 1l* )

3S 11
l*

n* 2N
D (n* 2N1l* )J . ~A6!

Under the very reasonable assumptions (l* )2!N and l*
!S, the curly brackets approximate very well to unity, a
so if, in addition,l* S!N,

F2~N!'S l* S

N1l* S
D l*

'S l* S

N D l*
'~m* S!l* . ~A7!

This result may be used to find a useful expression for
average number of species,^S& defined by Eq.~26!. Since
Ps(0)'expl* ln(l*S/N), it follows that

^S&'@12expl* ln~l* S/N!#S'Sl* lnS N

Sl*
D ~A8!

if l* ln(N/Sl* )!1. We now write

ln~N/Sl* !5 ln~@12m#C* /m!

5e211 ln C* 'e21 expe ln C* , where

e21[ lnS 12m

m D ~A9!

if eu ln C* u!1.
Now suppose that we assume thatl* !e and eu ln C* u

!1. It follows that l* e21@11eu ln C* u#!1, and therefore
that l* ln(N/Sl* )!1. Thus this latter condition may be re
placed byl* !e andeu ln C* u!1. The immigration ratem is
typically much less than 1, soe21'u ln mu. Therefore the last
condition becomesu ln C* u!uln mu. Putting all of this together
we find that

^S&'
l* S

e
~C* !e5

Nm

~12m!e
~C* !211e ~A10!

if l* S*1 @since we have used Eq.~A7!#, l* !e, and
u ln C* u!uln mu.

APPENDIX B

In this appendix we give details of the calculations p
sented in Sec. V. We begin by showing that if we apply
conditions~58! to the general solution@Eq. ~65!# of the par-
tial differential equation~55!, we obtain Eq.~66! with the
constants$wk% being determined by Eq.~67!.

First, let us apply the conditionF(1,t)51. Now Fl
(1)

'(12z)N1a andFl
(2)'(12z)N1b asz→1. Thus we define

ã5N1a and b̃5N1b. Then, from Eq.~62!,
e

-
e

ã5
@12l* S#2A@12l* S#214l

2
,

~B1!

b̃5
@12l* S#1A@12l* S#214l

2
,

with ãb̃52l. Since the constantsa and b appear in the
differential equation~61! symmetrically, we have made
choice as to which has the positive square root and which
the negative square root. From the general theory of the m
ter equation @10#, the eigenvaluesl are real and non-
negative, and soã and b̃ are real. Moreover, iflÞ0, they
are of different signs, since their product is negative. W
the choice of Eq.~B1!, ã,0 and b̃.0. From these results
we deduce thatFl

(1) diverges andFl
(2)→0 as z→1. We

must therefore takevl50 for all l.0. Whenl50, b̃51
2l* S, which may be negative, and so we also takew0

50. Finally, ã50 whenl50 and so this term is the only
one which is not zero or does not diverge asz→1. Since the
l50 solution is the stationary solution, the conditio
F(1,t)51 is automatically satisfied as long as the station
solution is normalized. Therefore, the application of this co
dition has reduced Eq.~65! to

F~z,t !5Fs~z!1 (
l.0

wl~12z!N1b

3F~b,b2c11,b2a11;12z!e2lzt, ~B2!

whereFs(z)5(nPs(n)zn.
Before proceeding any further, we need to investigate

sum overl more carefully. We know that this sum should b
over a set of discrete integers:F(z,t)5(nP(n,t)zn, n
P$0,1, . . . ,N%. An analysis of the structure of the hyperge
metric function in Eq.~B2! for large z shows that this will
only be so ifb is equal to an integer which is zero or neg
tive: b52 l . We can understand this condition by recallin
@12# that the functionF(a8,b8,c8;x) is a polynomial of de-
gree l ~where l is a non-negative integer! in x if a852 l .
Therefore, ifb52 l , thenF in Eq. ~B2! must be a polyno-
mial of degreel in (12z), i.e. (12z)N1bF must be a poly-
nomial of degreeN1b1 l 5N in (12z), as required.

From Eq. ~B1!, ã1b̃5@12l* S#, so if b̃5N1b5(N
2 l ), then ã5 l 2N1@12l* S#. Similarly, b̃2ã52N22l
2@12l* S#5A@12l* S#214l. A short calculation then
gives l5(N2 l )(v2 l ), wherev5N1l* S21. Since we
require l.0 in the sum in Eq.~B2!, then l 50,1, . . . ,N
21. So, in summary,

l5~N2 l !~v2 l !, l 50,1, . . . ,N21,
~B3!

a5 l 2N2v, b52 l , c512l* 2N,

where

v[N1l* S21. ~B4!

Rather thanl, it is preferable to usek[N2 l to label the
time-dependent solutions. Then Eq.~B2! becomes
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F~z,t !5Fs~z!1 (
k51

N

wk~12z!k

3F~k2N,k1l* ,2k1l* S;12z!e2k(k1l* S21)zt,

~B5!

where we have writtenwl( l ) aswk for convenience. We note
that if there were ak50 term in the sum, it would equa
w0F(2N,l* ,l* S;12z) which in turn equals@12#

w0

G~n* !G~n* 1l* 2N!

G~n* 2N!G~n* 1l* !
F~2N,l* ,12n* ;z!

5w0(
n50

N S N
n D G~n1l* !

G~l* !

G~n* 2n!

G~n* 2N!

G~l* 1n* 2N!

G~l* 1n* !
zn,

~B6!

which equalsw0(nPs(n)zn, using Eq.~12!. Therefore, Eq.
~B5! may be written in the alternative form

F~z,t !5 (
k50

N

wk~12z!k

3F~k2N,k1l* ,2k1l* S;12z!e2k(k1l* S21)zt,

~B7!

wherew051. It is also possible to write the functionF in
Eq. ~B7! as a Jacobi polynomial of orderN2k @12#.

The final step is to apply the initial condition given in E
~58! to Eq. ~B7! in order to determine the sets of constan
$wk%. This leads to

zm5 (
k50

N

wk~12z!kF~k2N,k1l* ,2k1l* S;12z!.

~B8!

To solve Eq.~B8!, let us write the hypergeometric functio
as

F5 (
n50

N2k

f n~12z!n

where

f n5~21!nS N2k
n D ~k1l* !n

~2k1l* S!n

, ~B9!

and where the symbol (a)n meansG(a1n)/G(a). Then re-
arranging the double sum gives

zm5 (
n50

N

~12z!n(
k50

n

wkf n2k5 (
n50

N

cn~12z!n, ~B10!

where cn5(k50
n wkf n2k . However, it is straightforward to

determine thecn : by expanding (12@12z#)m in powers of
(12z), we find thatcn vanishes forn.m and is propor-
tional to a binomial coefficient forn<m. Using this result,
and writing outf n2k fully, yields
(
k50

n

wk~21!n2kS N2k
n2k D G~n1l* !G~2k1l* S!

G~k1l* !G~n1k1l* S!

5H ~21!nS m
n D if n<m

0 if n.m.
~B11!

We now turn to the problem of findingP(n,t), which
involves identifying the coefficient ofzn in Eq. ~B7!. Let us
begin by consideringF(k2N,k1l* ,2k1l* S;12z). By
following exactly the same steps that lead to Eq.~B6! in the
k50 case, but this time for generalk, we find that this func-
tion equals

G~n* !G~2k1n* 1l* 2N!

G~k1n* 2N!G~k1n* 1l* !
F~k2N,k1l* ,12n* ;z!

5 (
r 50

N2k S N2k
r D G~r 1k1l* !

G~k1l* !

G~n* 2r !

G~k1n* 2N!

3
G~2k1l* 1n* 2N!

G~k1l* 1n* !
zr . ~B12!

Therefore, we may write the solution forF(z,t) @Eq. ~B7!#
as

F~z,t !5 (
k50

N

wk~12z!k (
r 50

N2k

r r~k!zre2k(k1l* S21)zt,

~B13!

where

r r~k!5S N2k
r D G~r 1k1l* !

G~k1l* !

G~n* 2r !

G~k1n* 2N!

3
G~2k1l* 1n* 2N!

G~k1l* 1n* !
. ~B14!

To identify powers ofz in Eq. ~B13!, we break it down
further:

F~z,t !5 (
k50

N

wke
2k(k1l* S21)zt(

l 50

k

~21! l S k
l D (r 50

N2k

r r~k!zr 1 l .

~B15!

Writing

(
l 50

k

~21! l S k
l D (r 50

N2k

r r~k!zr 1 l5 (
n50

N

x~n,k!zn, ~B16!

we have, from Eq.~B15!,
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F~z,t !5 (
k50

N

wke
2k(k1l* S21)zt (

n50

N

x~n,k!zn

5 (
n50

N H (
k50

N

wkx~n,k!e2k(k1l* S21)ztJ zn

⇒P~n,t !5 (
k50

N

wkx~n,k!e2k(k1l* S21)zt.

~B17!

So to findP(n,t) we have to determinex(n,k), which is the
coefficient ofzn in Eq. ~B16!. If we denote (21)l( l

k) by al

andr r(k) by br , this is like asking, what is the coefficient o
zn in

@a01a1z1•••1akz
k#@b01b1z1•••1bN2kz

N2k#?

The answer is

(
r 5max$n2k,0%

r 5min$N2k,n%

an2rbr .

Going back to the variables relevant to the problem un
consideration,
w
w

E.

r.

n

t.
r

x~n,k!5 (
r 5max$n2k,0%

r 5min$N2k,n%

~21!n2r S k
n2r D r r~k!. ~B18!

The complicated limits on the sum can be relaxed with
suitable interpretation of the binomial coefficient (L

M). For
instance,

~21!n2r S k
n2r D5

G~2k1@n2r # !

~n2r !!G~2k!
.

If ( n2r )<k, both the numerator and denominator on t
right-hand side diverge in such a way that the ratio is fin
and nonzero, and is commonly written as the left-hand s
If ( n2r ).k, then only the denominator diverges and t
right-hand side is zero. With this understanding, the low
condition on the sum in Eq.~B18! can simply be replaced by
r 50, since there is no contribution if (n2r ).k, that is, if
r ,n2k. A similar interpretation of the binomial coefficien
in r r(k) can be used to remove the upper condition on
sum. Result~B18!, together with the definition ofr r(k), de-
termine theP(n,t) given by Eq.~B17!.
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