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A dynamical model of an ecological community is analyzed within a “mean-field approximation” in which
one of the species interacts with the combination of all of the other species in the community. Within this
approximation the model may be formulated as a master equation describing a one-step stochastic process. The
stationary distribution is obtained in closed form, and is shown to reduce to a log-series or log-normal
distribution, depending on the values that the parameters describing the model take on. A hyperbolic relation-
ship between the connectance of the matrix of interspecies interactions and the average number of species
exists for a range of parameter values. The time evolution of the model at short and intermediate times is
analyzed using van Kampen’s approximation, which is valid when the number of individuals in the community
is large. Good agreement with numerical simulations is found. The large time behavior, and the approach to the
stationary state, is obtained by solving the equation for the generating function of the probability distribution.
The analytical results which follow from the analysis are also in good agreement with direct simulations of the
model.

PACS numbses): 05.40-a, 05.10.Gg, 02.50.Ey, 87.23.Cc

[. INTRODUCTION with the nodes labeled by=1, ... S representing the spe-
cies, and the links representing tfredator-prey interac-
The steady accumulation of data on all aspects of the vertion between the species at the two nodes being joined. This
diverse ecosystems that exist on Earth has revealed a numbsteraction is assumed to be given by a single real number,
of generic feature$l]. Examples include the followingi)  denoted by();; for the link toj from i. Thus the interaction
in species-rich ecosystems, the number of spefia$, with  between the species in the ecosystem is completely specified
n individuals following a power-law(n)~n"7*, whereyis by the SX S real matrix€2. Links from a node to itself are
close to 1[1,2]; (ii) a relation between the number of speciesnot allowed, and therefore this matrix has zero entries on the
in the ecosysten®, and the connectan®* —defined as the diagonal. The antisymmetric matri$;=(;;—; has a
number of predator-prey links between pairs of species dimore direct interpretation as the “score” of speciegjainst
vided by the total possible number of links—which has thespecieg.

hyperbolic formC*~S~1"7 with 5<[0,1] [3]; and (iii) (i) If >0, thenj acts as a resource far

other power-law distributions concerning the extinction of (i) If §;=0, there is no interaction betweérmnd].
species, for instance, where the lifetime of specigsap- (iii) If §;<<0, theni acts as a resource for

pears to be well described by the distributibigT)~T~ ¢, Modeling of multispecies ecosystems, involving species-

with 6 between 1.1 and 1B}]. There is an urgent need for species interactions or connections of this type, has a long
models of ecosystems to be developed which will allow thehistory [6]. Originally, population dynamics equations, such
underlying mechanisms which lead to these regularities to bas the Lotka-Volterra equations, were written down for two
understood. These models need to be defined for an arbitragpecies and then for many species. If one imagines studying
number of species, have a set of rules that specify the intethe equations near to any fixed point that might exist, it is
action between pairs of species which is reasonably simplpermissable to linearize about the fixed points, and the entire
and based on general features such as the competition beodel is then specified by a singix S matrix: the stability
tween species, and have a stochastic element that reflects thatrix. Whereas for systems involving two species it might
randomness of events which are inherent in real systems. Ioe useful to calculate this matrix in terms of the original
Ref. [5], a model of this type was introduced in order to parameters of the model, for systems of many species there
investigate the generic features outlined above. An analysiare simply too many parameters, and so the emphasis
of the model was begun in that paper, where both numericathanged to trying to investigate general properties that such
and analytical work showed predictions of the model to be inmatrices might have. An obvious, but crude, assumption, that
agreement with field data. Here we present a more detailethe entries were random, was first investigated by Nay
analysis of the model, using a variety of techniques, andvho found that the connectivity of the matrix was important
compare the results of this analysis with that from real ecoin determining its stability properties. Since then, this has
systems. We begin by defining the model. remained a central issue in ecolof), as has the study of

The ecosystem under study is taken to hBvedividuals  the abstract theory of species connected by a complex net-
and S possible species. It is modeled as a directed graphyork of interactiond9].
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Having described the basic idea we will use in our ap-ficult to study analytically. It is, however, relatively easy to
proach, we now need to specify the interaction mafdix  simulate, given the straightforward nature of the algorithm
Since the connectivity seems to emerge as an importarttescribed above, and we will discuss the results of extensive
quantity in both theoretical and experimental studies, we willnumerical studies in later sections of this paper. It would still
assign a fixed conductivitf to Q, so that we may study be very useful to have some approximate treatment available
how properties of the system change@ss varied. Other which would, at the very least, help to suggest forms which
than this, and the fact that the diagonal entries are zero, weould be used to fit the data and simulations. Fortunately, we
will not impose any other restrictions @@. We now have to can do much better than this. A mean-field theory of the
define the dynamics. The goal is to define a set of rulegibove model yields a master equation which can be analyzed
which is simple, but which builds up a complex model eco-using a number of standard techniques. Much of this paper
system after a sufficiently long time, showing the nontrivialwill be concerned with the derivation of these results and
emergent behavior mentioned at the beginning of this sedheir subsequent interpretation.
tion. We do this by assigning theff-diagona) entries ofQ2, The plan of this paper is as follows. In Sec. Il we derive
in a purely random way at=0, and updating the system at the master equation within the mean-field approximation,
discrete time steps as follows. At each time step, the followand in Sec. Il we investigate the nature of the stationary

ing rules are implemented. state. The time-dependent properties are the subject of the
(1) With probability 1— «, pick two individuals at ran- Nnext two sections: within a Gaussian approximation in Sec.
dom. Suppose they belong to specieandj, and thatS; IV, and a more general study in Sec. V. We conclude with a

#0. Replace the individual belonging to the species whicrsummary of the work presented in the paper in Sec. VI.
has a negative score against the other species by a new indihere are two appendixes: Appendix A and Appendix B con-
vidual of the more successful species. So, for example, ifain technical details which are used to derive some of the
S;>0, the total number of individuals belonging to speciesresults in Secs. Ill and V, respectively.

i goes up by 1, and the total belonging to spetigses down

by 1. If §;=0, no action is taken. Il. MASTER EQUATION
(2) With probability ., pick an individual at random. Re- ) ) _ ) i i
place it by another individual adiny of the S species. In this section we will derive a master equation which

These rules have an obvious interpretation. The first sim@Pproximately describes the complex dynamics introduced in
ply ensures that the most successful species, in the sense 9C- |- The key simplification is the use of a type of mean-
the species having the highest scores, grow at the expensefigtld theory. We focus on one of th# species, which we
the less successful ones. However, if the dynamics was tehall call species\. The otherS—1 species are no longer
consist only of this rule, then eventually all species but onélistinguished as separate species, and are simply lumped to-
would become extinct. Therefore, a second rule has to bgether and denoted as specksThe B species will be re-
introduced in order to obtain a diverse ecosystem. The simdarded as some kind of average species—a kind of effective
plest choice is to violate the first rule occasionally, by givingbackground population—with which specié§ interacts.
even unsuccessful species an opportunity through purely raf-here are various assumptions inherent in this approach. For
dom events. This is best not thought of as a mutation omstance, that the rate of reproduction is the same for all
speciation, but as an immigration event from an area outsid8Pecies, so that a typical specig§ can be picked out as
the ecosystem under study. representative. However, it does reduce the model to one in

We have not specified the initial distribution of the entriesWhich just two species are interacting, namefyand non-
in Q, and there is a certain amount of freedom regarding thi§A=B). Itis now relatively straightforward to derive a mas-
choice. In our simulations we have chos@y (i+j) ran- ter equation whlch desg:nbes the dynamics of this process.
domly from a uniform distribution 0i0,1], but any other ~To derive this equation, first suppose that0 for sim-
choice is equally valid, since only the sign 8f is impor- _pl|c_|ty. Then only rule(1) is in operation. In plckl_ng two
tant. Since the probability thdd;;=Q;;+0 is vanishingly mdw@uals_from a set oN |nd|V|d_uaI_s .of theS species, the
small, it is almost certain that if the conditic®; =0 men- fqllowmg situations arise(a) both individuals belong to spe-
tioned in rule 1 holds, then both; andQ;; are zero, and CieSA (b) one belongs teA and the other t@ and (c) both
species andj are not connected by a predator-prey relation-individuals belong to specig In caseda) and(c), there is
ship. Since the probability of any matrix element being zerd"© action taken under rulél). The probability of caseb)
is 1—C, the probability that botH);; and Q;; are zero is occurring is the sum of the probability that first @is

(1—C)?, and from what has been said above, the probabilityselec'[ed and thenBand the probability that B is selected

thatS;j is nonzero isC*=1-(1-C)% and then ar,

For those simulations that start with no species in the
system, a generalize®¢ 1) X (S+1) real matrixQ’, with E( 1— E) +(1_ ﬂ) (L :Zj(ﬂ)
an extra row and column denoted by 0, needs to be intro- N N—-1 N/IN=1/ N I{N-1)°

duced. Then, if5,>0, empty space acts as a resourcei for

If Su<0, then speciesfails to invade empty space. So, on wheren is the number of individuals of speciésin the

average, the expected number of species that can actualcosystem. We now have to focus on the quarty in

invade empty space BC/2 and the number of species in the order to implement the rule. The probability that it is nonzero

pool that can never interact with empty space is-@)S. is C*, and we would expect that, on average, half of the
What has been described above is a strongly interactinggvents the individual from specidswill have a higher score

stochastic multispecies model, and as such is extremely dithan the individual from specieB, i.e., Syg<0, and the
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other half of the events to ha@g<0. Therefore, the prob- Equation(3) is only valid for values of not on the boundary

ability that at each time step the number of spedem- (i.e., forn# 0 andn# N); for these values special equations

creases by 1 is have to be written, reflecting the fact that no transitions out
of region[O,N] are allowed. However, from Eqél) and(2)

N— n) we see thagy=0 andry,=0, and if additionally we define

N—1 rn+1=0 and g_;=0, then Egq.(3) holds for all n
=0,1,...N. To completely specify the system we also
and the probability that at each time step the number oheed to give an initial condition, which will typically have

n
W(n+1|n)=C*N(

speciesA decreases by 1 is the formP(n,0)= §, ,, for some non-negative integer.
We will end this section by determining the stationary
n(N-n probability distribution,P¢(n). SettingdP(n)/dt=0, one
— —C* | — 1bs I}
W(n—1[n)=C N(N—l)' obtains

We will show shortly that this process leads to a stationary r, . ,PJ(n+1)—g,Pn)=r,Ps(n)—g,_1Ps(n—1).

probability distribution which is nonzero only ii=0 or n (4)

=N, that is, only if either specieA dies out completely or

dominates completely. The second rule ensures that sonkhis is true for all n, which implies thatr,Pg(n)

diversity is retained. —0h-1Ps(n—1)=J, whereJ is a constant. Applying the
So suppose that we now include the second rule. Theoundary condition ah=0, we find thatJ=0, and, there-

transition probabilities above have now to be multiplied byfore,

1—pu, and those involving the second rule will involve a

factor u. Specifically, the probability that the individual roPs(n)=g,_;P«(n—1), n=0,1,...N. (5)

picked, when implementing the second rule, is replaced by

an individual of agivenspecies isu/S. If we ask that this |t ;,+0, thenr,#0 for all n, such that 8n<N, and there-

given species i#\, then, since the probability that the indi- f5re

vidual picked belongs to speci&is (1—n/N), the addi-

tional probability due to rul€2) that at each time step the

number of specieé is increased by 1 is Py(n)= WPS(O), n=1,...N. (6
ntn-1"""11
o n
S 1- NI The constanP¢(0) can be determined from the normaliza-

tion condition

Similarly, the probability that an individual is replaced by an N
individual of a different species ig(S—1)/S. Since the

probability that the individual picked belongs to spedieis nZO Ps(n)= Ps(o)’LnZO Ps(n)=1, @)
n/N, the additional probability that at each time step the
number of species is decreased by 1 is

N
, S(Py0) =14 3 Itz g
ﬁ(s_l)_ n=1 Inplp-1---T1
S N’

) ) . At this point it is convenient to introduce a set of combina-
Putting the two rules together gives the one-step transitiofions of the constants of the model which will appear fre-

probabilitiesg,=W(n+1|n) andr,=W(n—1|n) as quently in the analysis. These are
n/{N—n n
gn=C*(1—M)N<m)+%<1—N) (1) u*=pl[(1=p)SC ], N =u*(N-1),
and ©)

v =N+ u* (N—1)(S—1).
n(N—-n| u
fn:C*(l—M)N(m> +3(E-Dy- (2 The transition probabilitie$1) and (2) may now be written
in the more compact forms

We can now write down a master equation describing this

Z| >

one-step stochastic procdd®,11]. If P(n,t) is the probabil- C*(1-p) (N=n)(A* +1)
ity of speciesA having n individuals at timet, the master 9= N(N—1) '
equation takes the form
C*(1—u)
dP(n,t - T (v —
aPY)  P(n+10)+g, P(n—11) fn=NN—p " (10

dt
—(ro+gn)P(n,t). (3)  Substituting Eq(10) into Eq. (8) gives
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NN T(n+1*) T(v* —n) way that individuals are distributed among species. In any
(P4(0)) t= 2 (n) TN T island where colonization from the mainland and local ex-
n=0 (A7) () tinction take place, a dynamical equilibrium between these
* - two processes is reachgti3]. In these situations our model
= 2 (N)(_l)nr(n+i\ ) - )* ) applies and can help to understand the patterns observed.
n=0\N F(A) T(n+1-v") Highly diverse ecological communities are formed when

a large number of different species are present. The estima-
1y 2 R Rkl TS
tion and characterization of such biological diversity is not
This sum takes the form of a Jacobi polynomigff*?(x)  only a central issue in theoretical ecology, but also a question
[12], with a=—v*, B=\*+v*—(N+1) and x=—1, of practical concern for nature reserve design and conserva-
which can itself be expressed in terms of gamma functiongion biology in general. In any ecological community, spe-

for this value ofx. So, using Eq(6), we find cies vary considerably in the number of individuals that be-
long to that species. Some species are very difficult to find
N\ T'(n+A*) I'(v* —n) T(A\* +2v* —=N) because they are very rare. Some of them are extremely com-
Ps(n)= n/ T(\*) T(»*—N) T(\*+v*) ° mon. How are individuals distributed among species? What
v + %) g species a

(12)  factors affect this distribution? The classic way of studying
this topic is by means of species abundance relations—the

In various intermediate expressions we have assumedthat “relations between abundance and the number of species
is not an integer, but this final result is well defined for all possessing that abundancgl4]. Different types of species
meaningful ranges of the parameters, since, from(@qwe  abundance relations have been used to fit to real species
can see that* >N and\*>0. MoreoverP4(n)>0 for all  abundance data. Some of them have been justified on theo-
n=0,1,... N and 2,Ps(n)=1 by construction. By intro- retical groundgsee Ref[1] for a review. One of the most
ducing the beta functio(p,q)=I(p)I'(q)/T'(p+q), the  widely used species abundance distribution was first dis-
stationary, normalized solution can be written in the morecussed by Fisher, Corbet, and Williams in 194%]. The

compact form distribution is defined by two parametersand «,
N\ B(n+\*,v* —n) ax"

Finally, if =0, ry=0, so Eq.(6) no longer holds fom  where S(n) is the number of species havimgindividuals.
=N. Using the result thag,=0 in this case, one finds that Since Eq.(15 summed ovem gives a logarithm, this is
Ps(n)=0 for n=1,... N—1. By normalization we can known as the log-series distribution. It is very common as a
write Ps(0)=C andP¢(N)=1—-C, whereC is a constant. So, sampling distribution in the ecological literature, although it
as mentioned earlier, either speciss the only surviving was also derived on theoretical grourds,17).
species or it goes extinct. In other words, in the stationary The abundance distribution that has received more atten-
state only one species survives. Since all species are assumésh from ecologists, however, was introduced by Preston in
identical, it follows that, whernu=0, one of the most influential papers on ecological thddr§j
(also see Ref{19]). As May remarked, “theory and obser-
P(n)=0 for 0<n<N. vation points to its ubiquity onc&>1, when_ relative abyn-
dances must be governed by the conjunction of a variety of
(14 independent factors['14]. The distribution is the log-normal

. _ . distribution, so called because the logarithm of species abun-
Although we have obtained the exact solution for the stationysnces is normally distributed

ary distribution[Eq. (12)] in terms of nothing more compli-

cated than gamma functions, we still need to simplify it if we R?

are to compare the result with data. In Sec. Ill, we will derive S(R)=S(n0)exp( - —2) , (16)
simpler forms for the stationary probability distribution 2p

which are valid in different regions of the parameter space of

the model, and compare these with simulations. where, following Preston’s definitiong?=log,(n/no) is a
logarithmic measure of the abundance in relatiomge-the

abundance value where the distribution has its maximum. So
S(R)dR is the number of species having their logarithmic
We have so far been discussing the stationary state frorelative abundance betweéhand R+dR. Note that both
the point of view of a time-independent solution of the mas-Egs. (15 and (16) must be divided by the total number of
ter equation. But let us now ask the question in a biologicakpecies to be properly understood as estimations of the prob-
context: are ecological communities in stable equilibria? Al-ability distribution function.
though is obvious that environmental variability and chance In this section we want to compare the exact result for
have a great impact on ecosystems, some well-defined, timé&g(n) with these two distributions—the most widely used
independent, patterns arise when natural ecosystems are aiundance distributions in the ecological arena. We will de-
served. The model we have introduced reaches a wellive simpler forms for the stationary probability distribution
established dynamic stationary state which allows us to studwhich are valid in different regions of the parameter space of
some of these patterns. A particular example of interest is ththe model, and compare these with simulations of the origi-

1 1
P(O)=5. P(N)=1-g,

lll. STATIONARY STATE
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N =5000,S=300,C=0.5

p=0.002
g 10° ey 100 ey ,

FIG. 1. Stationary probability
distribution P¢(n) obtained from
the exact solutiofiEg. (13)] (solid
line) and the log-series approxi-
mation [Eq. (21)] (dotted ling,
with the simplest form for the
multiplicative factorkC [Eq. (23)],
for different immigration values.
In each plot the species relative
abundance distribution resulting
from the individual based model
is also shown(noisy solid ling.

nal model(that is, without making the mean-field approxi- and
mation. Log-normal and log-series distributions will natu-
rally emerge for different well-defined immigration regimes.
In a forthcoming paper we will analyze a large quantity of

N K)Z
nma .

Fz(n,N)~exp(—nA*SIN), A*S<N, )\*S<(

species abundance data from different ecological communi- (20
ties in detail. ,

We begin by discussing one situation in which the log-1nerefore, Eqs17)—(20) give
series distribution occurs. It turns out to be convenient to -1 *

i S . Ps(n)= - S), 21
rewrite result(12) for P4(n) by breaking it down into three s(n)=Kn""exp—nu™S) @1
separate parts: where/C=A*P4(0). This is the log-series equatigh5) with

_ x=e #"S and expressed as the fraction of species repre-
Ps(n)=F1(n) Fo(N) F5(n,N), (7 sented byn individuals in the steady state. Note that Eq.
where (15), by contrast, gives the absolute number of species with a
given abundanca.
I(n+)\*) SinceS<N, the conditiol\* S<N is redundant when the
Fi(n)= — stronger conditiol\* <1/Inn,,, is imposed. Therefore, Eq.
n'C'(\*) (21) holds when
F(N) I'(v*) r([v*—N]+)\*)[ b.(0)] l=n= < N 4 \F< (22)
= = , SENSNpp&—=  an < .
? F(A*+v*)  T(v*—N) ° max IN*S IN Nppax
(18)

To find an approximate form fo, we use Eq(A7), which
NI T(v*—n) gives an approximate form foP4(0)=F,(N). Under the
(N—n)! " very reasonable conditions that is much less thaiN/S,
- TeT) N, andS, but with \*S=1, we find

F3(n,N)=

We will now give a simpler form for each of these expres- K~ N* (u* SN (23
sions, being careful to state the range of validity of our ap- K ‘

proximations in each case. Details of the derivation of thes?—igure 1 shows the results of different simulations which
results is given in Appendix A. A nontrivial behavior occurs paye heen performed for increasing values of the immigra-
for relatively small values oh, so in what follows we will - tjon parameter. In order to calculate the species relative
only be interested in values of up 10 Nyay, Whereénma  apundance distribution, an ensemble average has been per-
<N andN>1. We will also suppose that there are manyformed. For each plot a collection of 2000 replicas has been

possible speciess>1. simulated. For each replica the probability distribution
From Egs.(A5) and(A3), we have that P(n,t) has been calculated after 500 000 simulation time
. steps. In Fig. 1, tha.* values increase from 0.033 when

, (199 =0.001 to 3.3 whenu=0.1. The last three plots do not

A
Fi(n)=—, n=1, A\*< . . ) 1O
' n IN Nax show such a good match with the log-series approximation
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N=1000,C=0.4,S=50

008 T T

*u=0.001,t=10°
opn=05t=10°

Stationary solution (u = 0.001)
—— Stationary solution (u = 0.5)

Pint)

FIG. 2. Abundance distribu-
tions for two individual-based
simulations are presented for two
extreme values of the immigration
parameter. Time is measured in
simulation time units. The station-
ary distribution Pg(n) is also
shown in both cases.

as the first three. Even in the upper three plots, where there  dpP(n,t)
appears to be a good fit with the log-series, we would only ~ —g57— = 2 Wan P(n',t) = E War nP(N,1),
expect a complete match for<in=10. From Eq.(22), we n#n n#n (24)

should bear in mind that this is only expected to be true as

long as N*<1/Innp,. For instance,\*=0.22 for 4 wherer,=W,_ 1, and g,=Wy,1,. If We now introduce

=102 (for the parameter sel=5000, S=300, andC Wi =(1=8nn)) W = On ' EnrsnWarn @and the vector

=0.5), and 1/iMpayis 0.434 whemp,q,=10. _ B(t)=[P(L}), ... ,P(N,1)], Eq.(24) may be written in the
In Fig. 2 two simulation results are displayed. The station-,5trix form

ary solution is also shown in both cases for comparison pur-

poses. The stationary solution is calculated numerically ei- d. R

ther by direct application of Eq12), as done in Fig. 1, or by aP=W~ P. (25

means of an algorithm that can find the stationary probability

distribution of any one-step stochastic process if it exists, as. . . . C

in Fig 2. This algyorithm ispbased on thF()a SUbroUtIEDAG Emdlng ﬁthe stationary stationary distributid®y(n)— the

[20]. To describe this, we first write the master equatign ~ vector Ps=[P(0), ... ,Ps(N)]—is then equivalent to

in the more general form solving a system oN+1 linear equationdV-Ps,=0 in N

N =1000, S =50, p = 1072 N = 10000, S = 500, p = 107%

(223
o
[+
o

& 8
@
S

Number of species
N oW
o o
Number of species
'S
o

n
(=]

FIG. 3. Species-connectivity relationship for
different parameter values. The expected number
of species in the system in the steady state is
6 062 04 06 08 1 6 02 04 06 08 1 shown plotted against the connectari@e. Note
that as long aa* S remains close to but slightly

-
o

(=]
o

-5 . -8 .
1071009908 =500, =10 140\~ 1000000, =500, 1 =10 greater than 1, a very good agreement is shown
between the exact forfEq. (26)] (single line in
w 80 ” 120 the ploy and the hyperbolic species-connectivity
3 8 100 relationship[Eq. (27)] (double ling.
g 60 &
80
5 5
8 4w 2 60
20
20
0 0
0 02 04 06 08 1 0 02 04 06 08 1
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N = 5000, S = 300, p = 0.005
300 T T T T 100
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N = 5000, 8 = 300, p = 0.0005

250 - R

200 - R
A A
W 150 | q o 50 -
v v

100 |

50 - R
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FIG. 4. Species-connectivity relationship.
Two simulations are presented. Standard devia-
tions from the ensemble average value are shown.
In the plot on the left,\* S=25—too high a
value to fit the approximation given by E@®7).

So in this case the only plotted curve is the exact
mean-field relatiofEqg. (26)]. In the plot on the
right, conditions needed to apply E7) are
quite well fulfilled and two curves are plotted: the
exact mean-field relatiofsolid line) and the ap-
proximation(dotted ling.

+1 unknownsP(n), n=0, ... N. In any one-step stochas- hyperbolic relatiofEq. (27)] is to hold. Such a tiny value of
tic process the matri¥V is tridiagonal. Our algorithm takes u means thag, and hencey, will be close to zero. The form
of the relationship betwee@* and(S) when the immigra-

advantage of this feature to solve the system.

Another quantity which is useful in comparing model pre-tion parameter has a larger value will be discussed else-
dictions to data is the average number of species in the stavhere.

tionary state, which we denote Ky5). Let P;(n) be the
probability that there ar@ individuals of species in the

In Fig. 4 the species-connectivity relationship calculated
from the individual modeling approach is shown. After car-

ecosystem. Therefore, the probability that there is at leading out 600 000 simulation steps, a 1000 ensemble average
one individual of species is 1—P;(0) and so the average Was calculated for each connectivity value. The initial con-

number of species i§S)=3;[1— P;(0)]. Within the mean
field approximationP;(0) is the same for all specieis
Pi(0)=P4(0) (the subscript denotes “stationary,” as be-

fore), so that

S
<S>:i§l [1-P4(0)]=[1-P4(0)]S.

Under the conditiona* S=1, \* < e and|In C*|<|In u|, we

show in Appendix A thafsee Eq(A10)]
<S>"‘(C*)_1+€,

where e 1~|In u| (see Fig. 3. Inverting this relationship
gives C*~(S)" 17 with n=e€/(e—1). The condition
A*S=1 is essentially equivalent taeN=1 (for a con-
nectance that is not too smalFor systems of interedt is
very large, and hencg must typically be very small if the

dition is the empty system. Although our mean-field approxi-
mation captures the essentials of the hyperboliclike behavior
of the species-connectivity relationship, there is a systematic

deviation from the mean-field prediction in the simulated

curves.

To sum up, the exact solution given in E4.3) admits a

(26)

log-series representation for low immigration regimes. For

these low immigration values a hyperboliclike relation is

also observed between the mean number of species in the
stationary state and the connectivity level given by the

trophic relationships predefined in the community max

(27)

We will now argue that the exact stationary distribution

probability is also very well approximated by a log-normal

p= 0.1

u=05 x10°
0.02 8
0.015 6
£, 001 =)
o o
0.005 2
0 0
0 200 400 600 0
n
x10° u=005

200 400 600

0 200 400 600 0

200 400 600

distribution for intermediate to high immigration regimes as
shown in Figs 5 and 2.

The idea behind the analysis we will present is to find at
which values ofn, if any, Pg(n) has a maximum. We then
expandP4(n) about this maximum to see to what extent this

FIG. 5. Log-normal approximatiofthe long-
dashed curvesfor the exact stationary solution
[Eg. (13) (solid line curves The parameter val-
ues that have been used ah=100000, S
=300, andC=0.5. The Gaussian approximation
(dotted curvepis also shown.



PRE 62 MEAN-FIELD STOCHASTIC THEORY FOR SPECIES- ... 8473

function can be analytically described by a log-normal dis- \/ﬁ2+(}\* +1)n+NF
tribution. o= . (32
First of all, from Fig 5, we can see thRt(n) may admit A* -1

a Gaussian representation for some parameter values. So let . o .
us look at this case first, before discussing the log-normal Since the Gaussian distribution is completely specified by
situation. To investigate for what parameter values this mayts first two cumulants, fixingy and o, given by Eqs.(30)
occur, we first find the position of the maximum®f(n). It ~ and(32), respectively, determines the entire curve. The dot-
is more convenient to consider yn) rather thanP¢(n).  ted lines in Fig. 5 show this curve, i.e., E§1), with the two
From Eq.(12), we obtain parameters fixed by Eq§30) and(32). The upper two plots
show very good agreement with the exact mean-field ap-
din Py(n) . proximation; in the lower two plots the agreement is not so
B T AURE R AU good.
To approximate the exact stationary solution as a log-
— (v  —n)+ y(N—n+1), (28)  normal distribution[Eq. (16)], we will proceed in a similar
way. Equation(16) can also be written dividing by the total
where number of species as

dinl(z) R? (Inn—Inng)?
l//(Z)ET- P(R)=Nex 53 =Nexp ————|,

P 207
(33
Setting Eq.(28) equal to zero gives the maximum value of
P(n) at n=n. If all arguments of the psi functions can be whereozp In 2, and whereVis a normalization constant to
considered to be large enough, which is true#N but be dete_rmlned. So let us express solutidB) as a function
reasonably largée.g.,n=100), these functions can be ap- ©f Inn instead ofn. After this change of variable a new,
proximated using#(z) ~Inz [12]. So equivalent, probability dlstrl_butlon function anse@,(x)_,
wherex=Inn, that has to satisfP;(n)dn="P¢(x)dx, or, in
dInPg(n) other words,
Tm—ln(n+1)+ln(n+)\*)

dn
Py(X)= 7 Ps(N)=nPy(n), 34
from which one finds that the maximum is given by which implies that
dInPyx)

(N+2)(>\*—1)_1 =1+~ p(e+ 1)+ y(e+\*)

\*S-2

n= (30) dx
— (v —e)+P(N-e+1)]. (39
From Eq.(30) we can see that ik* S<2 (very low immi- _ _ .
gration regimel the numerator and denominator are bothSetting Eq.(35) equal to zero, and using=Inn, we obtain
negative, and a maximum exists. However, this is inadmisthe position of maximum by finding the zera,, of the

sible, since it violates the conditian<N. Therefore, a nec- €duation
essary condition for the existence of a maximanis that 1
AN >1. A [zp(n+1)—w(n+)\*)+¢(v*—n)—¢(N—n+1)]=ﬁ.
Now, we perform a Taylor expansion of Ed.2) aboutn
to quadratic order. Ih=n+ &n, then, fordn small, In exactly the same way as for the Gaussian case, we can
write the Taylor expansion up to second order,
1 d?InPg(n)

InPy(n)=InPg(n)+

- (n—n)2+0(sn)3.
2
2  dn -

1
— 2
I P00 =1 Pa(xo)~ 5 (x—%0)%,

Sincen is a maximumgd? In Py(n)/dr?|,_;<0, and so we set or, equivalently,
this equal to—1/0®. Then ignoring theD(sn)® terms and
exponentiating gives (INnn—Inng)?

Ps(X) =7?s(x0)exp< - —) :

. 207
. (n—n)?
Ps(n)=Ps(n)exp — 252 | (31 where xg=Inn,. Finally, using Eq.(34), we obtain a log-
normal expression for the mean-field solution,
Under this approximationn<N, but reasonably larget is K (Inn—1Inng)?
not very difficult to derive an analytical expression for the P(n)= —exp( - —20 i (36)
variance: n 20
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N =5000,8=300,C=05

300 | B

FIG. 6. The expected value for the number of
species and the Shannon entropy as a measure of
diversity is computed at the steady state using the
‘ stationary distribution Eq. (13)] for increasing
o 00125 0.025 values of immigration parameter. Ensemble aver-
ages of these two quantities are also shown for
increasing discrete values of the same parameter.

200 -

100 -

6 1000 replicas of the model have been simulated.

5r —— T Values for the number of species and Shannon

4r —5 f = ** et ] entropy have been recorded after 500000 simula-
3 * ] tion time steps, when the system has reached a

f 0 ] stationary state.

0

L
0 0.0125 0.025

s
whereK=nyPg(Nng). approach, the quantity which we can calculat® ién)—the
The evaluation of the second derivativexatx, allows us  probability that a typical species will haveindividuals in
to fix a value for the variance?: the system when it is in the stationary state. Since the num-

ber of species withn individuals in the system is just

1 5 SP,(n), we may express E¢37) within our approximation
—=1=(ng) [ —¢'(Ng+ 1)+ 4" (Ng+\*) as
g

+' (v* —ng)— ¢ (N—ng+1)]. H=—>, SPy(n)(n/N)In(n/N). (39)

Although in this case there is no way to derive a simple, yeﬁvI

sufficiently general, analytical expression for the maximum

no and the variancer?, in Fig. 5 we use the asymptotic

series expansion fap(z) [12] to calculate numerically both s

quantities. Once again, since the log-normal distribution is H=—— > Py(n)n(Inn—InN)

completely specified by, and o2, fixing these fixes the N “m

entire curve. The figure shows that the log-normal approxi- s

mation matches the exact solution well for intermediate to =——{(nInn)—(n)In N}

high immigration regimes. We also note that, in general, the N

log-normal distribution is a better fit to the exact solution S

than the Gaussian. =InN-— N(n Inn). (39
Log-normal and log-series distributions have been used

by ecologists to fit real abundance data for year

[15,18,19,2,1,2]L Our results show that it is possible for

both distributions to stem from the same general ecologic valuation using the stationary probability distribution

process under different immigration regimes. If, for mstancePS(n)’ for increasing values of the immigration parameter

we counted species abu_ndgncgs in a small area W't.h'n ﬁ. For comparison purposes, direct computation of the av-
wood, the log-normal distribution would probably arise,

. . . rage number of species and the average entropy for 1000
since that area is noldou'bt wgakly isolated from t'he rest o epl?cas of the modgl and its standard deg\]/iation isp éhown. It
the Woo_d by externe_ll Immigration. T_he same experiment perean e seen that for relatively low immigration rates the sys-
fprmed In-a rth_er |so|at_ed area might b? e_xpe_cted to 9V€em tends to be saturated, admitting as many species as pos-
rise to an empirical relative abundance distribution well f't'sible. As immigration increases, the Shannon entropy grows
ted by a log-series function. ’

) A : . . steeper than the number of species does, meaning that immi-
Finally, in this section we calculate the diverskiyof the P P g

gration tends to equalize the number of individuals of differ-
_ecosysten_(also called the_S_hannqn entropfpr our model ent species first, rather than increase the actual number of
in the stationary state. This is defined by

species in the system.
s In Figs. 4 and 6 it can be seen that ensemble average
H= _2 piInp;, (37) curves fqr the expectgd number of species i.n the statiqnary
i=1 state deviate systematically from the mean-field approxima-
tion that we have implemented through the master equation
wherep; is the probability that an individual selected at ran- (3), even though they show the same qualitative behavior.
dom from the system belongs to speciefsl]. Clearly, p; The explanation for this slight disagreement comes from the
=n;/N, wheren; is the number of individuals of specietn ~ way we are estimating the probability of an effective inter-
the stationary state. On the other hand, within our mean-fiel@ction within the system. When transition probabilities are

ultiplying Eqg. (3) by n and summing, it is easy to find that
(n)=N/S in the stationary state. Using this result we have

STherefore, we only need to evalugteln n) in the stationary
tate to findH. Figure 6 shows the result of performing this
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discussedEgs. (1) and(2)], the probability of interaction is where ¢(t) is some unknown macroscopic function which
split into a product of the probability of picking two potential will have to be chosen to follow the peak in time. A new
interacting individuals multiplied by the probability of hav- probability distributionII is defined byP(n,t)=II(¢,t),
ing an actual link between the species they belong to. Howwhich implies that
ever, these two events are not independent. The assumption
of independence is just an approximation that allows us to oIl 1,2d¢ Il
simplify the system and gain some insight into the dynamical P= gt N dt a¢” (41)
processes that take place during simulations. In particular,
for any parameter choice, the individual-based model ha¥he master equatiof8) may be written
more interactions than expected, and cannot maintain the _
same number of species as predicted by our mean-field ap- P,.=(E-Dr,P,+ (£ 1-1)g,P,,, (42
proximation.
where £ (£71) is an operator which changes into n
IV. TIME DEPENDENCE +1 (n—1), e.g., iff, is an arbitrary function of, then

Efn="Fn4+1. In terms of§¢,
What can our model say about the assembly of an eco-

logical community? Whenever species colonize a new island 9 92
or any empty space, a new community builds up from El=1+ N*1’27 JrEN’l—2 . (43)
scratch. The process that takes place is called succession by ¢ 2 23

ecologists. The assembly of an ecological community has

been studied both from theoretical and empirical points of/SiNg Eas(40—(43) the original master equation fé¥(n,t)
view. Many patterns have been found during the process dfa" Pe rewritten as an equation 1d(¢,t). By rescaling the
ecological successiofsee Ref[22] for a review. For in-  tme according tor=t/N, a hierarchy of equations can be

stance, the number of species grows in a particular way th&l€rived by identifying terms order by order in powers of

depends on the immigration from a biogeographical speciel 12, The first two of these are
pool. If our model is to make any prediction about succes- q
sion, simulation time must have a direct meaning in terms of _¢:alo(¢) (44)
physical time. In our model the only connection to physical dr '
time comes from the immigration parameter, but the model
in fact has two time scales. The external one is defined by thand
flux of individuals from the bhiogeographical pool and the I L
internal one is defined by the flux of individuglsirth-death Jalb d
procesyas a consequence of the internal dynangesrwise or ard d))&—g(éﬂ) +§a2v0(¢)
random encountersvithin the system. Our immigration pa-
rameter captures the relative importance of these two differgyhere
ent temporal processes.

Therefore, having investigated the properties of the sta- o
tionary state in Sec. Ill, we now move on to a study of the ard)=g~md,
time evolution of the system within the mean-field approxi-
mation. The master equatidB) has transition probabilities P
g, andr, which are nonlinear im, so that an exact solution s )=2C*(1—u)p(1— ¢)+§+ §(S_ 2) .
for the time-dependent behavior is not possible. However,
since in the problem of interedt is very large, the possibil-
ity of performing a largeN analysis suggests itself. In this
section we will describe the application of such an
analysis—specifically van Kampen'’s larfemethod[10]— 1
to our model. This method has a number of attractive fea- d(1)=p(0)e FT+ =(1—e *7). (47
tures, for instance, the macroscofiie., deterministicequa- S
tion emerges naturally from the stochastic equation as
leading order effect iMN, with the next to leading order giv-
ing the Gaussian broadening Bf(n,t) about this average
motion. The method was clearly presented in R&f], so m 1
we will only give a brief outline of the general idea and H(t)= —e HINL Z(1—e rtIN), (48)
stress the application to the model of interest in this paper. N S

If we take the initial condition on Eq3) to be P(n,0)
=dhm, We would expect, at early times at leaB{,n,t) to
have a sharp peak at some valuenofof orderN), with a
width of order NXN~Y2=N2 |t is therefore natural to
transform from the stochastic variabieto the stochastic
variable ¢ by writing

2

7 ws
9g2’

(46)

The first equatiofEq. (44)] is the macroscopic equation for
¢(7). Itis easily solved to give

?nitially we ask that £(0)=0, which means thaip(0)
=n(0)/N=m/N. Going back to the variable gives

The second equatiofEq. (45)] is a linear Fokker-Planck
equation whose coefficients depend on time throégiiven

by Eq.(49). It is straightforward to show that the solution to
this equation is a Gaussian and so it is only necessary to
determine( £), and(&?), to completely characterizd (&,t).

By multiplying Eq. (45) by £ and £2, and using integration
n=Nd(t)+ N2 (40) by parts, one find§10]
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0.08
=500 —— Siationary solution
~~~~~~~ Gaussian approximation, t = 1.02 1 o°
—_- Numer!ml !ntegrat!on, l: 1.021 ?
T
........ e - FIG. 7. Temporal evolution of
‘"‘\-.,_\ the relative abundance distribution
_ TTmLa P(n,t). The parameter values are
£ 0.04 . e N=1000, S=50, C=0.4, andu
o 100 200 =0.001. An individual-based
n simulation, the numerical integra-
tion of P(n,t) at two successive
times, and the exact stationary so-
lution are also presentgthse).
t=10000
04
0 50 100 150
n
I{E) .= ard d)(E),, . We havg already ppmmented that the solution of (&8)
(49) is a Gaussian. Specifically,
(97-< §2>T: 2“&0( ¢)<§2> T+ aZ,O( ¢)
1 [n—Ng(t)]?
In our cased,(&),=— u(£),, and so P(n,t)= NE) exp — N, ) (52)
T T
(£),=(&)oe™"7=0, (50

since we have already assumed t@{,=0. A straightfor-

ward, but tedious, calculation now gives

(ptup) (S—1)

29+
LA

m

S

[1-e2+7]

(S-2) _
—= €

X[1—e #T|—2nA?%re 2T,

where n=C* (1—u) and A=(m/N)—(1/S).

(51)

where (&), and ¢(t) are given by Eqs(51) and (48), re-
spectively. In Figs. 7 ah8 a comparison between the nu-
merical integration of the master equation and the Gaussian
solution for different times is shown. The Gaussian behavior
is lost for large times. In Fig. 8 the Gaussian behavior is
maintained longer due to a higher immigration rate; as the
immigration rates increase still further, the Gaussian form
persists for even larger times.

In order to compare the time behavior of the mean-field
approach introduced in this work through the master equa-
tion (3) with the time behavior of the individual-based model
(IBM) defined by the rules presented in Sec. |, one should
carefully define what is meant by time. Individual-based

0.03 . |
-| 400
Numerical solution R
........ Gaussian approximation Lono '\:/
t=1000
0.02
£ | - 0
o 200000 400000 600000 t = 3000
Time
0.01 |\
\ b= 600000
t = 60000
(o Jo———_

FIG. 8. Temporal evolution of
the relative abundance distribution
P(n,t). The parameter values are
N=1000, S=50, C=0.4, andu
=0.01. The temporal evolution of
the variance and the average
abundance computed using Egs.
(51) and (48), respectively, and
that from the master equation, are
also shown(inse).

200
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N =5000, S =300, p =0.005,C=0.5 . .
150 . : : . FIG. 9. Time evolution of the

number of species in the system.
The individual-based simulations

100 - match the expected value from the
master equation. The system starts
n r 1 with no species. During the sto-

chastic assembly process the num-
ber of species fluctuates, but the
average behavior is captured by
o ; ; , the mean field approach repre-

1
0 50000 100000 150000 200000 250000 sented by the master equati(jgj_
Time

50 B

simulations are performed by the iteration of an algorithmand whereG(i) must be understood as the set of species—
from the first step up to a given number of updating steps. Iifferent from i—that are connected tb through the pre-
Sec. |, such an updating step was defined as a time unit. Letefined interaction matrif2.

us call it the simulation time unit. In Ref5] a different Since the two events defined are independent from each
operational choice was made. Whatever the convention is, ether, the probability of occurrence of any one of them in
clear distinction must be made between the simulation timeany smalldt is

and the physical time needed to compare simulation results

with either the numerical integration of the master equation Pr{lUD}=(r,+rp)dt.

(3) or the largeN solution derived in this section. The ques-

tion then arises: how is physical time to be tracked in anyWWhen an event occurs there is a change in the actual con-
stochastic realization of the IBM? To analyze this point wefiguration of the system either by immigration or by internal
will follow an argument given by Rensha@3]. At any time ~ dynamics and the rates must be calculated again. So, ap-
t, the probability of an event occurring in the system can beproximately, on average the number of such effective events
estimated. Such a probability depends on the system configip any time interval of lengtit would be ¢,+rp)t, and
ration, i.e., the abundance of all present species, and on thould be distributed as a Poisson random variable with that
relative immigration rates in relation to the internal dynam- mean. The important point is that now the probability of
ics rate - . Both rates have dimensions @f 1. Obvi- having no events in any time interval of lendthi.e, for any
ously, it also depends on the other parameters of the modéime between 0 andt can be written as:

(N, S andC). Although the method described in RE23] B

estimates every transition probability rate for all possible Pr{0}=e(""rolt, (53)
events in the system, there is no need to estimate the prob- _ . )

ability of this rather high number of possible events. There/\ccording to Eq.(53), the probability of having at least one

N ) | . _ 7( + )t_ . e . . _
are only two relevant temporal processes: immigration angvent is 1-e~"1"'o”—the cumulative probability distribu
internal dynamics. Thus, it is enough to consider two differ-tion for an exponentially distributed random variable. There-
ent possibilities. fore, the time to the next event is an exponentially distributed

(1) An immigration event occurs if any species from the 'andom variable with expectation L/trrp). Then we
pool happens to enter the system. The probability of a poo‘f’h‘)“'d sample that distribution in order to predict when the

species entering the system in any snatlis next effec_tive event WiII_take place. Accumulating these in-
terevent times during simulations, we are able to track the
Pr{l}=r,(t)dt, physical time, which have the same units[ag+rp] %, so
the same time units which arise in the master equatdpn
where the immigration rate is In Fig. 9, the time evolution of the number of species in
the system is shown. Different stochastic realizations of the
w ni(t) IBM are presented. The numerical integration of the master
r,=§ 2’1 ( _T> equation allows an estimation of the expected number of

species at any time in the systei®) through Eq.(26). The
average behavior of the different stochastic simulations is
well captured by the prediction given by E(R6), where
P(0,t) is computed at each numerical integration time step.
€S 1n Fig. 10 the probability of having a species represented
by nindividuals at particular early timeB(n,t) is plotted. It
has been computed by performing a numerical integration of
the master equatiofB) (dotted ling and by means an en-
semble average for the individual-based model after 5000
simulation time steps. Two extremely different initial condi-
tions have been used. In the first one, there are no species in
s the system at time 0. Species enter the system and either
fDZ(l—M)E 2 w nJ_(t) establish themselves in it or not, performing what could be
=1jéai) N N called a stochastic community assembly. In the second initial

(2) An internal dynamics everid occurs when the inter-
action between a pair of individuals from two potentially
interacting species gives rise to a change in their abundanc
The probability of such an event occurring in any sntill
can be written as

Pr{D}=rpdt,

where the internal dynamics rate is
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N = 5000, S = 300, C=0.5, p = 0.005

0.06 FIG. 10. Individual-based model and the tem-

poral evolution ofP(n,t). Comparison between
the mean-field approadidotted ling and a 2000
ensemble average after 5000 simulation time
steps for random mixture and empty system ini-
tial conditions. In the first case, two different nu-
merical integrations have been performed for
=9946 and 10400. In the second case, just one
numerical integration has been performed until
=6725. The reason for these different times is
that 5000 simulation updating steps can represent
more or less physical time depending on the ini-
tial configuration of the system.

004 | |

P(n,t)

0.02 -

state, all species are represented in approximately equal a=v*—1=N\*(S—1)+N-1,

numbers. Obviously, the one-humped distributions are ob- (57)
tained when the initial condition is a random mixture of spe- B=A*+1—-N and y=N\*.

cies, which is represented by(n,0)=1 if n=N/S and

P(n,t)=0 if n#N/S in the master equation approach. The The conditions orf are

purely decreasing distributions are obtained when the initial

state is a completely empty system. The agreement between F(1)=1 and F(z0)=2", (58)
the mean-field approach represented by the master equatigil follow from the normalization conditiol,P(n,t)=1
and the simulations is seen to be reasonable. and the initial conditiorP(n,0)= 8, ,, respectively.

. A_S shown in. Figs. 7 and 8, evgntually,. th_e 'probability The partial differential equatiofb5) is separable: if we
distribution deviates from a Gaussian. While it is true that, ;o F(2,5)=S(s)®(2), then S(s)=e~ S, where\ is a

one could in principle calculate these non-Gaussian effectéonstant_ The equation fab is then
using van Kampen'’s approachy taking higher order terms

in N™¥2 into accoun), the method becomes increasingly 2P do

cumbersome. Therefore, in Sec. V, we adopt a totally differ- z(1—2)2— —(1—2)(a+Bz) —+ y(1—-2)®=\D.
ent approach to the calculation of time dependence, which is dZ dz

able to give information abowR®(n,t) at late times. (59

This can be brought into a more standard form by the change
V. GENERATING FUNCTION of variables

The technique we will use to probe the time dependence 1
of P(n,t) in this section is based on the solution of the d=(1-2)N¢ and u=-—. (60)
differential equation satisfied by the generating function 1z

N The new form of the equation is
F(z,t):nz,O P(n,t)z" (54) i do
u(l—u)—+[c—(a+b+1)u]5——abp=0, (61
du? du

for our model in the mean-field approximation. Starting from
Eq. (3) the derivation of this equation proceeds along stan-

dard lines[10,11] to yield where
2 a+tb=1-\*—N—v*,
F T L. 62
75~ ATt Amnlat g, —y(1m2)F, ab=N(\* +»*~1)-\ and c=1-\*—N,
(55

The reason for making transformati¢®0) is that Eq.(61) is

where we have introduced a new time the standard form for the hypergeometric equatjd2],

which has the two independent solutions:
*

s={t where (= m

(56) #M=u"?F(a,a—c+la-b+1;u"h),
(63

and where the constants 3, andy are defined by ¢P=u"PF(b,b—c+1b—a+1u?).
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Now u~t=1-z, and so in terms of the original variables the N+1 constantsv, (k=0,1,...N), and so can deter-
mine them uniquely. Thus, Eq66) together with Eq.(67)

¢V=(1-2)" " *F(aa-ctla-bt1il-2), provide a complete solution to the partial differential equa-
) N-+b (64) tion (55).
=127 F(b,b—c+1p-a+1;1-2). Although the solution is not in closed form, it is possible

to obtain thew, for small values ofk rather easily. Fon
=0, Eq.(67) involves onlyw,, for n=1 only wy andw;,
and so on. The expressions for the first three constants are

The general solution to E@55) is then

F(z,t)=2 {0, @D +w, @@}e 4, (65)
A
N
where{v,} and{w,} are sets of arbitrary constants. Wo=1, Wi=g—m
To determine the arbitrary constants in E5), condi-
tions (58) have to be implemented. The details are given in .
Appendix B, where it is shown that the required solution is W _(N=D)(3+N7) ﬂ_ m}
27— * S
N (2+\*S)
F(zt)=2 w(l-2) N(N-1) (1+A*) m(m—1)
k=0 - - . (69
25 (1+\*S) 2
XF(k—N,k+\*,2k+\*S;1—-2)
x @~ k(kra*s—1)ct (66)  the result forw, confirming what we already knew. These
_ results are very useful because, as is clear from(&®), the
where the constantav,} are determined by large-time behavior of the system is governed by small val-
N ues ofk. In this case, as we will now show, an explicit form
S w1k N—k| T(n+A*)['(2k+\*S) for P(n,t) can be found.
= Wi~ 1) N=K/ P (k+\*)T(n+k+\*S) To find P(n,t) we have to identify the coefficient @ in

Eqg. (66). In Appendix B it is shown that this leads to

(—1)“(m) if n=m
n (67) N .
0 if n>m. F><n,t>=k2O Wix(n,k)e KkaTs=1z (69)

This equation holds for all allowed values ai (n
=0,1,... N). We therefore hav8l+ 1 linear conditions for ~where

r=min{N—k,n}

k N—k
x(nk= > (—1>“f(n_r>( r)

r=maxn—k,0}
C(r+k+\*) T'(v*—r) T'(2k+A*+v*—=N)
T(k+A\*) T(k+v*=N) T(K+\*+ %)

(70

This result appears to be rather complicated, but fortunately it simplifies in many cases of interest. For instance, suppose we
wish to find P(0t): the time evolution of the probability that there are no individuals of the species present in the system.
Since x(0,k) has only one term in the sumn£€0),

_ *qQ_
e klkir*s-1)t

N T(2K+ v* +\* —N)
POH)=T(r*)> w,
=0 “T(k+ v* —N)T(K+ v* +\%)

S(N*S+1)

1 —\*Sit
(S—1)(N*S+N)

=P 0){ 1+w

S(N*S+1)(AN*S+2)(\* S+3)
S—1)[\*(S—1)+1](A*S+N)(\*S+N+1)

e 20 Sty

+w, ( , (71



8480 ALAN McKANE, DAVID ALONSO, AND RICARD V. SOLE PRE 62
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100 | _
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s0f =" Nz:lneer:cl_anﬁnltl:gra‘i;:ppmx'ma o _ FIG. 11. Temporal evolution
I <S5 swtlonary stale of the expected value for the num-
o . . . . ber of species in the system. A
0 50000 100000 150000 200000 250000 truncated solution provided by Eq.
Time

(71) is shown(dashed lines Only
the first 20wy coefficients have
been computed. The agreement
with the numerical integration of
the master equatioribold lineg
becomes better and better the
larger the time is. FoiN=1000,
S=50, and C=0.4, such an
agreement is quite good even for
early times.

N =1000,S=50,C=0.4

10

1 =0.001

2 p=0.01

L 1 1 1
0 50000 100000 150000 200000 250000

Time

which describes the approach to the stationary state at large In Fig. 12, the computation d?(n,t) for n=1, 2, 3, and
times. In Fig. 11 the temporal evolution of the expected4 is shown. The solution is approximate because again just
number of species, estimated &gt)=S1—-P(0t)] is the first 20w, have been considered, although E§9)
shown. The temporal solution provided by this method iswould be an exact solution as long as all of the terms from
exact as long as the total number of coefficients can be conk=0 tok=N could be summed without numerical error. For
puted without numerical error. In Fig. 11 a truncated, ap-practical reasons this is obviously not possible. In particular,
proximated solution is compared with the straightforwardat early times, the truncation of E@9) introduces errors in
numerical integration of the master equation. CompleteP(n,t). The same is true when is too large, because the
agreement is observed at large times. sums in Egs.(67) and (70) are too long to be computed
If n#0, the large-time behavior ¢(n,t) still has arela-  without errors, and some numerical instabilities arise.
tively simple form,

P(n,t)=Pg(n)+wyx(n,1)e " S& VI. CONCLUSIONS

In this paper we have analyzed a model which has a struc-

+ n,2 e—z(x*s+1)gt+.”, 72 .
w2x(n.2) (72 ture which is rich enough to show many of the underlying

where xy(n,1) has only two terms;=n—1 andr=n (only
one ifn=0 orn=N), and x(n,2) has only three terms;
=n—2,n—1, andn (fewer if n=0,1N—1, orN).

patterns seen in real ecosystems, but is still sufficiently
simple for a variant of the mean-field approximation to be
applied to obtain analytical results. The most straightforward

N =1000,S=50,C=04,u=001
0.06 . ; ;

— POy
---P@Y
— — P@3Y)
— - P@Y

004 I FIG. 12. Temporal evolution

of the probability of having any
species represented by one, two,
three, and four individuals com-
puted directly from EQq.(69) in
700000 200000 300000 dotted lines, where again a trun-
Time cated solution is usedonly the
N =1000, S = 50, C = 0.4, jr = 0.001 first 20 wy are considered com-
0.03 T pared with the numerical integra-
tion of the master equatiotbold
lines. The initial condition is
P(n,0)= 6, where m=500 in
the upper plot andn=0 in the
E lower one.

P(n,t)

0.02 -

P(1,4

P2t

P(n,t)

P(3.t)

P(4

0 50000 100000
Time
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guestion that can be asked concerns the nature of the statioec. Ill. In our analysis, we will frequently make use of the
ary state. Within the mean-field approximation an exact formasymptotic form for['(z+a)/I'(z) when z=1 and z>a.

for this stationary distribution may be derived. We found thatUsing Stirling’s approximation foe=1, one has that

this exact result reduced to a log-series distribution in the

regime of low immigration, and to a log-normal distribution I'(z+ta) a|(#ra-12

in the regime of moderate to high immigration. These two I'(2) =z 1+E exp(—a)
distributions have been discussed by ecologists for decades

as possible forms for the species abundance distributions. a a\?

Our approach gives a clear interpretation of the parameters X|1+Pay(2) z +P(2) z T

on which they depend. This fact has practical consequences

for conservation biology in order to determine the potentialwhereP;(z) are power series in 2/ Therefore, if in addition
richness §), the global siz&N), and the degree of isolation we impose the conditioa<z, then to a very good approxi-
(u) of a community. We have therefore shown how mation

logseries and log-normal distributions can arise as two dif-

ferent limits of a single distribution, a distribution which is, ~ T'(z+a) 14 of1+9se-a 721 =1
moreover, the stationary distribution of a well-motivated I'(2) ~(1+e) ze " z=4, €_E< :
ecological model. We also found evidence of a hyperbolic (A1)

relation between the connectivity and the average number of
species—the so-calle@* — S relation. While we were able Note thata need not be small, it simply has to be much less
to derive this result in the low immigration regime, there wasthanz
a small systematic derivation from the mean-field result and Applying Eqg. (Al) to F3(n,N), one finds N>1=v*
the simulation curves. >1):
While the stationary distribution is of considerable inter-

est, the strength of the approach that we have adopted here is F(N+1-n)| Y T(v*—n)

that predictions of the time evolution of the system are also Fa(n, :[ F(N+1) I'(v*)

possible. An approximation based on the number of indi- v

viduals in the _system being Igrge Igd _to the pictureP(xh.,t) N1\ n o\ -(N+1-n)

as an approximately Gaussian distribution broadening and ~ (1__

moving with time. This behavior may persist for quite a long v N+1

time, especially when the immigration rate is high, but even- .

tually the Gaussian form is lost at large times. To explore the n |\ "

approach to the stationary distribution, a complimentary for- X 1_V_* : (A2)

malism is required. Such a method is discussed in Sec. V
where a formal general solution for the temporal evolution of-
the probability of having any species representech iydi-

viduals is given. This solutioP(n,t) is given as a series
expansion around the stationary state. In particular, such

he term in curly brackets is equal to 1, plus corrections
which are negligible ih2 A* SIN?<1 and\* S<N. There-
fgre, under these conditions

solution allows one to predict quite well how the number of N \FS
species in the system increases with time during the stochas- Fo(n,N)=| — | ~exp—nin| 1+ )
tic assembly process. ' v* N

In summary, we believe that this simple model has illu-
minated the general mechanisms at work in ecosystems, and ~exp(—n\*S/N), (A3)
has allowed us to understand the broad features of some of .
the universal phenomena seen in these systems. We hoH&iNgS>1 andA*S<N again. .
that the results presented here will motivate further work 10 find a simpler form for7,(n), we again apply Eq.
both in the increasingly sophisticated stochastic modeling ofA1), but with the more stringent conditioa<1. It then
ecosystems and in the interpretation of ecological data withifecomed'(z+a)/T'(z)~2% and so, fon* <1 andn=1,

a theoretical framework. .
1 T(n+r*) A*nt
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f]_(n)%T, n=1, A* <

If we now ask that* Inn,,,,<1, we have that

I . (A5)
APPENDIX A N Nimax
In this appendix we will give details of the derivations of To estimateP¢(0), we apply Eq.(Al) directly to F,(N) in

the simpler forms of the stationary distribution discussed inEq. (18). Assuming\*S=1,
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-1

AN C(v* +\%) C([v* —N]+\*) El_[1—7\*8]—\/[1—>\*S]2+4>\
2 T(v*) T(v*—N) 2 '
* * * (Bl)
»*—N\ AT ~ [1-N*S]+\[1-\*S]?+4\
~ 1+ — b= )
V* V* 2
Nx | N with ab=—X\. Since the constanta and b appear in the
X| 1+— (A6)  differential equation(61) symmetrically, we have made a
" —N choice as to which has the positive square root and which has

the negative square root. From the general theory of the mas-
Under the very reasonable assumption$)®<N and\*  ter equation[10], the eigenvalues\ are real and non-
<S_, the cur_ly brackets approximate very well to unity, and negative, and sa andb are real. Moreover, i #0, they
so if, in addition,\* S<N, are of different signs, since their product is negative. With

the choice of Eq(B1), a<0 andb>0. From these results
we deduce thatb{") diverges andp{?) -0 asz—1. We

must therefore take, =0 for all A\>0. Whenx=0, b=1
—\*S, which may be negative, and so we also takg
This result may be used to find a useful expression for the=0. Fina||y,5=o whenX =0 and so this term is the only
average number of specigs5) defined by Eq(26). Since  one which is not zero or does not divergezas 1. Since the
Ps(0)=exp\* In(\*SN), it follows that A=0 solution is the stationary solution, the condition
F(1t)=1 is automatically satisfied as long as the stationary
solution is normalized. Therefore, the application of this con-
(A8)  dition has reduced Ed65) to

)\*

\*S *
~(p* M. (A7)

N+A*S

Mon*s
N

Fo(N)~

N
(S)~[1—expr* IN(A\*SIN)]S~S\* ln(S)\_*

if \* In(N/S\*)<<1. We now write F(z,t):Fs(z)Jré‘,o Wy (1—=2z)N*P

IN(N/SN*)=In([1— u]C*/ ) XF(b,b—c+1b—a+1;1-z)e ' (B2
=e 1+InC*~¢e lexpelnC*, where whereF (2) =S, Py(n)2".
1-u Before proceeding any further, we need to investigate the
ElEm( ) (A9)  sum oven more carefully. We know that this sum should be
over a set of discrete integer&(z,t)=2,P(n,t)z", n
€{0,1, ... N}. An analysis of the structure of the hypergeo-
metric function in Eq.(B2) for large z shows that this will
only be so ifb is equal to an integer which is zero or nega-
tive: b=—1. We can understand this condition by recalling
[12] that the functiorF(a’,b’,c’;x) is a polynomial of de-
greel (wherel is a non-negative integein x if a’'=—1.
Therefore, ifb=—1I, thenF in Eqg. (B2) must be a polyno-
mial of degred in (1—2), i.e. (1—2)N"PF must be a poly-

M

if €|In C*|<1.

Now suppose that we assume thdt<e and e|In C*|
<1. It follows that \* e [1+ ¢€|InC*|]<1, and therefore
that A\*In(N/S\*)<1. Thus this latter condition may be re-
placed byA* < e ande|In C*|<1. The immigration rate: is
typically much less than 1, se ~|In u|. Therefore the last
condition becomefn C*|<|In w|. Putting all of this together,

we find that nomial of degreeN+b+1=N in (1—-2z), as required.
A*S Ny From Eq.(B1), a+b=[1-\*S], so if b=N+b=(N
(== (C) == ;5.(C)"° (AL —1), thena=I—N+[1-)*S]. Similarly, b—a=2N-2I

—[1-\*S]=\[1—-A*S]?+4\. A short calculation then
givesA=(N—1)(w—1I), whereo=N+\*S—1. Since we
require A\>0 in the sum in Eq.B2), thenl=0,1,... N
—1. So, in summary,

if \*S=1 [since we have used EdA7)], \*<e, and
[In C*|<|In wl.

APPENDIX B A=(N-D)(w-1), 1=01,...N-1,

In this appendix we give details of the calculations pre-
sented in Sec. V. We begin by showing that if we apply the
conditions(58) to the general solutiofEq. (65)] of the par-
tial differential equation(55), we obtain Eq.(66) with the
congtants{wk} being determlned. _by Eq67)_. " o=N+N*S—1. (B4)

First, let us apply the conditiofr(1t)=1. Now ®j
~(1-7""* ind¢§2)~(1_Z)N+b asz—1. Thus we define  Rather tharl, it is preferable to us&k=N-1 to label the
a=N+a andb=N+b. Then, from Eq(62), time-dependent solutions. Then E&2) becomes

(B3)
a=l-N—w, b=-I, c=1-A*—N,

where
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N " N—K| T(n+\*)[(2k+\*S)
)= + _»nk nk( )
FO=Fa+ 2, w(l-2) 2D T(k+\*)[(n+k+\*S)
* * Q- —k(k+A*S—1)¢t
XF(K=N,k+\* 2k+\*S;1-2)e X w, (_l)n(m) ¢ nem
(B5) = n (B11)
0 if n>m.
where we have writtew, ;) asw, for convenience. We note
that if there were &=0 term in the sum, it would equal
wWoF(—N,A\* A*S;1—2z) which in turn equal§12] We now turn to the problem of findin®(n,t), which
involves identifying the coefficient of" in Eq. (B7). Let us
C(v*)C(v* +A*—N) begin by considering=(k—N,k+A*,2k+\*S;1—-2). By
(=N, 1-v%;2) following exactly the same steps that lead to EBf) in the

W,
"T(vr* —N)T(v* +2\*)

N
:WOE

n=0

k=0 case, but this time for genetalwe find that this func-
(N) C(n+\*) T(»*—n) T(\* +v* —N) ) tion equals
n/ T(\*) T(+»*—N) T(\*+*) 2

F(v*)Ir'(2k+v* +1* =N
(B6) SN ) F(k—N,k+\*,1-v*;2)
F(k+v*—N)F(k+V*+)\*)

which equalsw,>,P¢(n)z", using Eq.(12). Therefore, Eq.

(B5) may be written in the alternative form 2 (N k) I'(r+k+A*) T'(v*—r)
N B L(k+\*) T(k+v*—N)
F(z0)=2 w(1-2)" T2kEN N 510
TN %) 2 (B12

XF(k—N,k+\*,2k+\*S;1—z)e KkrAs-1a

(B7)  Therefore, we may write the solution fé1(z,t) [Eq. (B7)]

wherewy=1. It is also possible to write the functidn in as

Eq. (B7) as a Jacobi polynomial of ord&—k [12].

The final step is to apply the initial condition given in Eq. N N-k
(59) to Eq. (B7) in order to determine the sets of constants ~ F(z,t)= >, wy(1—-2)%>, p,(k)Z'e Kk s-na
{w,}. This leads to k=0 r=0

(B13)
N
2 (1= 2)KF(k=N,K+\* ,2k+A*S;1—2). where
(B8)
To solve Eq.(B8), let us write the hypergeometric function o (k):(N_k) L(r+k+a) TO* -1
as r r F'(k+x*) T(k+v*—N)
N—k [(2k+\*+v* —N) B14
F= 20 fo(1—2)" x T(k+\*+v*) (B14)
i
where To identify powers ofz in Eq. (B13), we break it down
NCKL (kEA%) further:
fn=(—1)”( SR AL (B9)
N/ (2k+\*9), N K N—k

% k
_ —k(k+\*S—1)¢t ! e+l
and where the symbohl,, meansl’(a+n)/I'(a). Then re- F(zb kgo Wie® ;o =1 (I)rEO prk)z
arranging the double sum gives (B15

N n N
=D (1-2"S wf, = c,(1—-2)", (Bl0) Writing
n=0 k=0 n=0

wherec,==}_ow,f,_. However, it is straightforward to Nk

k
determine the,,: by expanding (+[1—z])™ in powers of Zb (— ( ) 2 pr(k)Z = E x(n,k)z", (B16)
(1—2), we find thatc,, vanishes fom>m and is propor-
tional to a binomial coefficient fon=m. Using this result,
and writing outf,,_, fully, yields we have, from Eq(B15),
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N N
F(Z,t):E Wkefk(kJr}\*S*l){tE X(n,k)zn
k=0 n=0

N

2 ka(n,k)e_ k(k+\*S—1)¢t 7N
k=0

N
2
N
=P(n,t)= > wey(n,k)e Kk s—1it
k=0 o

So to findP(n,t) we have to determing(n,k), which is the
coefficient ofz" in Eq. (B16). If we denote ¢1)'() by a,
andp, (k) by b,, this is like asking, what is the coefficient of
Zz"in

[ag+a,z+ - +aZ¥]|[bo+biz+ - +by_ 2V K]?

The answer is

r=min{N—k,n}

>

r=maxn—k,0}

an_by.
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r=min{N—k,n} K
x(nk= > (—1>”f(n_r)pr<k>. (B18)
r=maxn—k,0}

The complicated limits on the sum can be relaxed with a
suitable interpretation of the binomial coefficier{f)( For
instance,

_T(—k+[n—r])

n—r k
(=1 (n—r)_ (N—N!T(—k) ’

If (n—r)=<k, both the numerator and denominator on the
right-hand side diverge in such a way that the ratio is finite
and nonzero, and is commonly written as the left-hand side.
If (n—r)>k, then only the denominator diverges and the
right-hand side is zero. With this understanding, the lower
condition on the sum in E4B18) can simply be replaced by
r=0, since there is no contribution ih¢-r)>k, that is, if
r<n-—Kk. A similar interpretation of the binomial coefficient
in p,(k) can be used to remove the upper condition on the

Going back to the variables relevant to the problem undesum. Resul{B18), together with the definition gs,(k), de-

consideration,

termine theP(n,t) given by Eq.(B17).
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